Система отопления — коротко и по делу

Приборы водяного отопления

В качестве обогревательных элементов помещений могут выступать:

  • традиционные радиаторы, устанавливаемые под оконными проемами и возле холодных стен, например, с северной стороны здания;
  • трубные контуры напольного обогрева, иначе – теплые полы;
  • плинтусные обогреватели;
  • внутрипольные конвекторы.

Водяное радиаторное отопление – самый надежный и дешевый вариант среди перечисленных. Установку и подключение батарей вполне реально выполнить самому, главное, — верно подобрать количество секций по мощности. Недостатки – слабый прогрев нижней зоны комнаты и расположение приборов на виду, что не всегда согласуется с дизайном интерьера.

Все имеющиеся в продаже радиаторы делятся на 4 группы по материалу изготовления:

  1. Алюминиевые – секционные и монолитные. На самом деле отливаются из силумина – сплава алюминия с кремнием, являются наиболее эффективными по скорости прогрева.
  2. Биметаллические. Полный аналог алюминиевых батарей, только внутри предусмотрен каркас из стальных труб. Сфера применения – многоквартирные высотные дома с центральным теплоснабжением, где теплоноситель подается с давлением свыше 10 Бар.
  3. Стальные панельные. Сравнительно дешевые радиаторы монолитного типа, сделанные из листов штампованного металла плюс дополнительное оребрение.
  4. Чугунные секционные. Тяжелые, теплоемкие и дорогие приборы с оригинальным дизайном. Из-за приличного веса некоторые модели оснащаются ножками – подвесить такую «гармошку» на стену нереально.

Примечание. Речь идет о чугунных радиаторах в современном дизайнерском исполнении. Батареи советского образца типа МС-140 устарели по всем параметрам.

По востребованности лидирующие позиции занимают стальные приборы – они недороги, а с точки зрения теплопередачи тонкий металл мало уступает силумину. Следом идут алюминиевые, биметаллические и чугунные обогреватели. Выбирайте, какие вам больше нравятся.

По востребованности лидирующие позиции занимают стальные приборы – они недороги, а с точки зрения теплопередачи тонкий металл мало уступает силумину. Следом идут алюминиевые, биметаллические и чугунные обогреватели. Выбирайте, какие вам больше нравятся.

Требования к монтажу систем отопления

Будет ли организована система отопления частного дома с нуля или модернизирована старая, первое, с чего стоит начать, — это ознакомиться с нормативной документацией, регламентирующей введение в строй оборудования и его дальнейшую эксплуатацию. Знакомство с этим, пусть и не очень увлекательным, документом займет не больше получаса, зато обезопасит вас на долгие годы.

Есть базовые требования, на которые нужно обратить пристальное внимание. Самое главное, что следует учитывать при монтаже котлов отопления, труб, радиаторов и другого оборудования, —пожаро- и взрывобезопасность. Поэтому при установке отопительного оборудования стоит убедиться, что оно будет находиться в свободном доступе для периодического контроля и чистки системы, а в случае выхода из строя какого-либо элемента его можно будет легко отремонтировать или заменить. Пренебрежение такими простыми правилами может привести к серьезным последствиям.

Вот несколько правил, которые позволят сделать дом теплым и безопасным:

  • Температура теплоносителя, если такой используется в системе отопления, должна быть на 20°С ниже температуры самовоспламенения/испарения вещества. Если вы используете в качестве теплоносителя воду температурой выше 105°С, следует предотвращать ее вскипание. Температура кипения зависит от изменения давления жидкости. Так, при давлении в 2 атмосферы вода закипает только при +120°С.
  • Температура поверхности открытых элементов системы не должна превышать максимально допустимую.
  • Теплоизоляция приборов и оборудования системы должна быть организована так, чтобы защищать от ожогов, уменьшать потери тепла, исключать конденсацию и предотвращать замерзание теплоносителя в неотапливаемых помещениях.
  • Необходимо изолировать горячие конструкции системы, если они могут повлечь воспламенение газов, аэрозолей и пыли в помещении. При этом температура на поверхности теплоизоляции должна быть на 20°С ниже температуры самовоспламенения.

Теперь, вооружившись проектной документацией и схемой системы отопления, можно приступать к следующему этапу — непосредственному монтажу отдельных элементов. И начать следует с горячего «сердца» дома — котла. Модели малой мощности (до 60 кВт) можно установить в любом бытовом помещении: на кухне, в кладовой или прихожей. Для более мощного агрегата придется обустроить специальную котельную с хорошей системой вентиляции. Монтаж котла отопления в доме осуществляется согласно требованиям, которые обычно указываются в руководстве к оборудованию. Но есть и общие правила.

Достоинства водяных систем отопления

Вода представляет собой практически несжимаемую среду со значительной плотностью и теплоемкостью. Использование воды в качестве теплоносителя в системе отопления обеспечивает:

  1. равномерную температуру воздуха;
  2. возможность качественного регулирования при ограничении температуры поверхности отопительных приборов;
  3. значительный срок службы;
  4. бесшумность действия;
  5. простоту обслуживания и ремонта.

Воздух также является легкоподвижной средой со сравнительно малой теплоемкостью, плотностью и вязкостью. При использовании воздуха можно обеспечить быстрое изменение и равномерность температуры воздуха в помещениях, совмещать отопление с вентиляцией воздуха, а также избежать установки отопительных приборов.

Выбор подходящей отопительной системы

Система отопления должна отвечать требованиям комфортности, экономичности и надежности. Ее можно создать только при правильном выборе котла, оптимальной автоматики и отопительных приборов.

При выборе котельного оборудования стоит соблюдать несколько простых правил:

  • Хорошая база компании-производителя, наличие сервисной службы;
  • Приобретать теплогенерирующее оборудование лучше всего у одного производителя. Это скажется на максимальной эффективности всей системы. Более эффективная работа оборудования от одной компании обусловлена заточкой агрегатов для совместной работы;
  • Выбирать продукцию только проверенных производителей. Как правило, монтажные организации склоняются к выбору оборудования BUDERUS, VIESSMANN. Их оснащение обеспечит наиболее эффективную работу и надежность системы.

Основной котел выбирается в несколько этапов, выходя из доступных энергоносителей (газ, пелеты, уголь, электричество) и экономичности при комфортных условиях в процессе эксплуатации.

Также к установке рекомендуется дополнительный (резервный) котел. Это делается с целью обеспечения бесперебойной работы системы отопления в случае выхода из строя основного теплогенерирующего оборудования.

Иногда роль резервного котла может исполнять оборудование, которое использует для генерации тепла иной вид энергоносителя, чем основной котел. Такой способ эксплуатации дополнительного котла обеспечит повышенную экономичность в случае повышения тарифов на основной энергоноситель.

Капитальные – стоимость котлов, отопительных приборов, труб, других материалов и оборудования. Эксплуатационные – затраты во время использования системы отопления.

Расширительный бак и циркуляционный насос

Расширительный бак необходим для компенсации увеличения объема теплоносителя при нагревании. Так для воды, при нагреве до температуры 80 градусов ее объем увеличивается примерно на 5 %. Поэтому необходимо устанавливать расширительный бачек, при чем для открытой и закрытой системы применяются различные конструкции.

Бачек для открытой системы представляет собой емкость, объем которой полностью используется для заполнения теплоносителем при его расширении. Поэтому его объем должен составлять примерно 7% от общего объема теплоносителя.

Система отопления частного дома с насосом подразумевает применение герметичного бачка. Такие емкости конструктивно разделены на 2 части эластичной мембраной, с одной стороны которой находится воздух под давлением обычно 1,5 атмосферы, а с другой теплоноситель. В этом случае бак необходим объемом 10 – 12% от общего объема.

Выбор циркуляционного насоса осуществляют на основе расчетных значений расхода и напора. Расход – объем жидкости за единицу времени который должен прокачать насос. Напор – это гидравлическое сопротивление, которое должен преодолеть насос.

Формула для расчета расхода:

Q=0,86 x P / dT,

где Q – расчетный напор, P – тепловая мощность (мощность котла), dT – перепад температур между подачей и обраткой (обычно 20 градусов).

Формула для расчета напора:

H=N x K,

где H – величина напора, N – количество этажей с учетом подвала, K – коэффициент усредненных гидравлических потерь, принимается 0,7 – 1,1 для двухтрубных систем, 1.16 – 1,85 для лучевых схем.

Читайте также:  Потолочная люстра в гостиную: правила подбора под интерьер.

Приведенные формулы это расчет системы отопления для частного дома приближенного характера, для точных вычислений характеристик необходимо использовать специальные методики, которые позволяют учесть все возможные факторы и точно определить режимы работы.

Стальные прочны и долговечны. Однако их использование сопряжено со сложностью монтажа, выполнить который без навыков сварных работ невозможно. Кроме того, чтобы они не портили внешний вид помещения их необходимо периодически красить.

Из чего состоит отопление (отопительная система)

Сначала вкратце пробежимся что такое система отопления и из чего она состоит. В самом общем виде тепло должно где-то вырабатываться и куда-то по чему-то передаваться и, соответственно, отопительная система состоит из:

  • теплогенератора,
  • теплопровода,
  • отопительного прибора.

Вкратце система отопления состоит из трёх основных элементов

Всё это может существовать в едином приборе, например, переносной обогреватель — он же и генератор и проводник и сам себе отопительный прибор. Ну, а в других случаях это система, состоящая из основных этих элементов.

Теплогенератор

Генераторы могут иметь различные виды топлива: электрические, дизельные и т.п. (см. ниже классификацию). Суть генератора в выработке из топлива тепловой энергии и передачи её теплоносителю.

Теплоноситель

Теплоносителем может быть жидкость или газ (к примеру, воздух в печи, идущий по дымоходу — газовый теплоноситель). Генератор передаёт тепловую энергию теплоносителю и вместе с ним тепло переносится на отопительный прибор.

Отопительный прибор

Если это печь, то она выступает и прибором, так же отопительным прибором выступает дымоход. При водном отоплении (где теплоносителем служит жидкость) прибором выступают радиаторы отопления.

Всё это может существовать в едином приборе, например, переносной обогреватель — он же и генератор и проводник и сам себе отопительный прибор. Ну, а в других случаях это система, состоящая из основных этих элементов.

Водяное

Водяное отопление — самый распространённый вид теплоснабжающих систем. В систему входят:

  • Отопительный котёл.
  • Трубопроводы.
  • Радиаторы.
  • Насос циркуляционный.
  • Датчики температуры.
  • Термостаты.
  • Контролёры.

Справка. Принцип работы максимально прост. Вода, которая проходит через котёл, подогревается до требуемых параметров, по трубам доставляется в нужное помещение. Через трубы и радиаторы излучается тепло, вода охлаждается и идёт обратно в котёл.

Преимущества:

  • Вода — самый доступный и недорогой теплоноситель. Она поглощает в четыре тысячи раз больше тепла, чем воздух.
  • Так как система замкнутая, объём воды после окончания монтажа и запуска не меняется.
  • Есть возможность регулировать температуру на каждом радиаторе. Нет необходимости вентилировать помещение.
  • Водяная отопительная система работает практически бесшумно, не разносят пыль по сравнению с воздушными системами.

Недостатки:

  • Водопроводная неподготовленная вода агрессивна для металлических элементов, так как в её составе присутствуют соли и щелочи. Происходит коррозийный процесс, осаждается накипь, поэтому замедляется поток жидкости и снижается коэффициент теплоотдачи.
  • Вода может замёрзнуть и локально разорвать трубопровод. Поэтому требуется добавление антифризов в теплоноситель.
  • Монтаж сложный и финансово затратный.

Фото 2. Установка радиаторов в квартире. Приборы являются частью системы водяного отопления.

Внимание! В системе парового отопления используются бесшовные толстостенные стальные или медные трубы, радиаторы чугунные с оребрением или регистры из труб (это прибор по типу конвектор).

Силикатные бетоны: характеристики, способы получения, применение

Силикатные бетоны в отличие от обычных получают на основе известково-кремнеземистых вяжущих автоклавного твердения. Для силикатных бетонов приемлема та же классификация, что и для обычных – по структурным признакам и назначению.
Распространение силикатных материалов началось с 1880 г., когда В.Михаэлисом был предложен силикатный кирпич. Основополагающей идеей получения силикатных материалов является твердение известково-кремнеземистых композиций в результате синтеза гидросиликатов при повышенных значениях температуры и давления водяного пара. При твердении портландцемента гидросиликаты и другие гидратные новообразования образуются при нормальных значениях температуры и давления в результате реакций гидратации высокоактивных клинкерных минералов. Близость состава цементирующих соединений у портландцементного и силикатного бетонов во многом определяет и близость свойств этих материалов.
Основными исходными материалами силикатных бетонов являются воздушная известь и кварцевый песок. Качественные показатели сырьевых материалов должны обеспечивать их высокую пеакционную способность. Решающее влияние на скорость реакций и кинетику формирования структуры силикатного бетона оказывает химический и минералогический состав известково-песчаной смеси, а также ее дисперсность.
Реакционная способность извести зависит в основном от содержания активного оксида кальция, размеров кристаллов СаО, содержания МдО. С повышением температуры обжига известняков увеличивается размер кристаллов СаО и замедляется скорость гашения. Существенное влияние оказывает микроструктура карбонатных пород. С уменьшением размера кристаллов кальцита и увеличением их плотности быстрее в процессе обжига укрупняются образующиеся кристаллы СаО.
Возможно применение двух основных схем производства силикатного бетона – “гидратной” и “кипелочной”, отличающихся условиями гидратации извести. При гидратной схеме известь гасится после смешивания с песком в гасильном барабане или в силосах. При «кипелочной» схеме реализуется гидратационное твердение известково-песчаной смеси. Эта схема предусматривает совместное тонкое измельчение негашеной извести с частью кварцевого песка и последующее смешивание этого тонкодисперсного автоклавного вяжущего с остальным песком как заполнителем и водой для получения пластичной удобоукладываемой известково-песчаной смеси. Гидроксид кальция, образующийся при гашении в условиях «кипелочной» схемы, характеризуется более высокой дисперсностью. Прочность, плотность и долговечность силикатного бетона в условиях «кипелочной» схемы выше, чем при применении предварительно загашенной извести («гидратная» схема).
Регулирование процесса гидратации извести достигается за счет введения растворов некоторых электролитов, ускоряющих скорость гашения, а также за счет добавок ПАВ, замедляющих реакцию гидратации СаО.
Для изготовления силикатных бетонов применяют кварцевые пески, содержащие не менее 75-80% 5Ю2. Большинство примесей в песке являются инертными включениями и не участвуют в образовании гидросиликатной связки. Нежелательны примеси в песке карбонатов и слюды. Имеются данные, что при наличии в песке 2,5% слюды прочность силикатного бетона падает почти на 30%, а при 5% слюды – на 50%.
Лучшими макроструктурой и физико-механическими свойствами обладают бетоны, изготовленные из песков с минимальным объемом межзерновых пустот. Для молотого песка оптимальные размеры фракций 10-50 мкм.
Растворимость кремнезема возрастает с повышением температуры, достигая максимума (0,1%) при ЗЗО’С. При этом возрастает концентрация насыщенного раствора и ускоряется образование гидросиликатов.
Тонкомолотое известково-песчаное вяжущее, имеющее, как правило, высокую активность (25-35% активных СаО+МgО) может быть заменено известково-шлаковым или зольным вяжущим значительно меньшей активности по содержанию активных оксидов кальция и магния (10-15%). При этом достигается сокращение количества извести в смеси примерно в 2-3 раза.
Аналогичный эффект может быть получен при замене части извести другими высококальциевыми отходами, например, белито-вым шламом.
При наличии в извести более 5% пережженных частиц, в состав известково-кремнеземистого вяжущего целесообразно вводить высокодисперсные активные минеральные добавки (трепел, опока, обожженная глина, перлит и др.).
Твердение силикатных бетонов происходит при тепловлажнос-тной обработке в автоклавах насыщенным паром под давлением 0,9-1,6 МПа, что соответствует температурам 174,5-200’С.
Основные положения теории автоклавной обработки извест-ково-кремнеземистых материалов разработаны П.И.Боженовым, Ю.М.Буттом, А.В.Волженским, К.Э.Горяйновым, П.Г.Комоховым, А.В.Саталкиным и рядом других исследователей.

Бетоны наиболее высокой прочности образуются при преобладании в продуктах твердения известково-кремнеземистых смесей гидросиликатов группы СSН(В). Однако имеются данные, что бетоны, цементирующими соединениями в которых служат гидросиликаты СSН(В), а также С5S6Н5, имеют пониженную морозостойкость и повышенные усадочные деформации.
Рост прочности бетонов при автоклавной обработке проходит через максимум и при длительном запаривании начинает снижаться. Увеличение прочности обусловлено интенсивным образованием высокодисперсных гидросиликатных клеящих прослоек на зернах песка. По мере затухания этого процесса идет перекристаллизация – укрупнение частичек гидросиликатов, что приводит куменьшению площади контактов и снижению механических показателей твердеющего материала. По мере образования кристаллического сростка из новых гидросиликатов прочность вновь начинает расти.
Экспериментально показано, что повышать давление пара, а следовательно, и температуру в автоклавах целесообразно лишь до определенной величины (обычно, не более 1,7 МПа). Для каждого состава шихты имеется своя оптимальная величина давления и соответственно время выдержки в автоклаве, обеспечивающие полноту реакции образования гидросиликатов кальция и их кристаллизацию. Дальнейшее повышение давления может вызвать чрезмерный рост кристаллов, что влечет за собой возникновение неблагоприятной структуры цементирующего вещества.
С оптимальными значениями давления и температуры автоклавной обработки связано и оптимальное значение дисперсности известково-кремнеземистого вяжущего, определяющей степень пересыщения раствора, необходимую для получения прочного кристаллического сростка.
Прочность силикатных бетонов изменяется в широких пределах: от 5-10 МПа для легких и до 80-100 МПа для высокопрочных тяжелых бетонов.
Наибольшее распространение получили мелкозернистые силикатные бетоны, заполнителем которых является обычный кварцевый песок.
Соотношение между активным оксидом кальция и молотым песком в вяжущем назначают из условия получения при автоклавной обработке гидросиликатов кальция оптимального состава при минимальном расходе извести.
Модуль упругости силикатного бетона при той же крупности заполнителя имеет существенно (25-30%) меньшее значение по сравнению с модулем упругости равнопрочного цементного бетона нормального твердения. При пониженных значениях модуля упругости, силикатный бетон может иметь существенно меньшую ползучесть, чем цементный. Так, по данным А.В.Щурова, абсолютная величина предельной меры ползучести силикатных бетонов не превышала 1,7, тогда как для обычного цементного бетона она составляла 3,9.
Для автоклавного силикатного бетона характерно несколько пониженное сцепление с арматурой. Если для обычного жесткого бетона на портландцементе отношение прочности сцепления к прочности на сжатие составляет 0,23-0,28, то для силикатного бетона оно равно 0,10-0,22. При применении арматуры периодического профиля сцепление силикатного бетона с арматурой возрастает в 1,5-2,5 раза. В силикатных бетонах более вероятна, чем в цементных, коррозия арматуры, что объясняется меньшей щелочностью среды. Если в цементных бетонах рН = 12-13,5, то в силикатных 9,5-11. Наиболее благоприятные условия для развития коррозии арматуры создаются при недостаточной плотности бетона и эксплуатации его в условиях повышенной влажности (до 75-85%).
Водостойкость силикатных материалов автоклавного твердения изменяется в значительных пределах. Прочность силикатного кирпича в воде может снижаться до 30%, что объясняется его повышенной открытой пористостью, возможным содержанием некоторого количества свободной гидратной извести. Коэффициент размягчения силикатных бетонов в воде колеблется обычно в интервале 0,8-0,9. Наиболее водостойкими являются плотные силикатные бетоны, цементирующая связка которых состоит из гидросиликатов С5Н(В), тоберморита, ксонотлита. Это достигается правильным выбором соотношения СаО и 5Ю2, надлежащей тонкостью помола вяжущего, введением добавок доменного шлака и др. Многие исследователи экспериментально доказали, что водостойкость силикатных бетонов может быть не ниже, чем бетона на портландцементе.
Морозостойкость силикатных бетонов, также как и цементных, определяется в основном структурой порового пространства.
Силикатный бетон, уплотненный вибрированием, имеет обычно морозостойкость 50-100 циклов. При низкой формовочной влажности можно повысить морозостойкость до 150-300 циклов.
Морозостойкость силикатных бетонов с использованием негашеной извести, как правило, выше, чем бетонов, изготовленных по гидратной схеме производства. Последние отличаются повышенной водопотребностью и более низкой плотностью. Также как и для цементных бетонов морозостойкость силикатных бетонов можно существенно повысить, вводя воздухововлекающие добавки.
Разновидностью силикатного бетона является силикальцит. Технология этого материала предложена И.К.Хинтом и отличается тем, что помол и смешивание извести и песка осуществляют в быстроходном дезинтеграторе (с числом оборотов до 1500 в минуту). Таким способом обеспечивают минимальный слой извести между дисперсными кварцевыми частицами и високую прочность материала. Различают силикальцит вибрированный, литой и пеносиликальцит. Прочность силикальцита на сжатие может превышать 100 МПа, он характеризуется высокой морозо- и коррозионной стойкостью.
Область применения в строительстве силикатных бетонов достаточно обширна. Это стеновые, облицовочные, конструктивные, теплоизоляционные изделия, изделия специального назначения -шпалы, тюбинги, пресованные кровельные изделия и др.

Читайте также:  Плюсы и минусы популярных способов реставрации чугунной ванны

Авторы: Л. И. Дворкин, О. Л. Дворкин

  • Можно использовать пломбировку бетонного миксера – это будет гарантией того, что в процессе транспортировки он не открывался.
  • С нашей помощью вы сможете купить бетон в Чехове, цена за куб которого складывается в ходе торгов между бетонными заводами.
  • Детальные данные о цене бетона м500 за куб (его характеристики, круг употребления и месторасположение производств).

Авторы: Л. И. Дворкин, О. Л. Дворкин

Плотные тяжелые бетоны

Изготавливаются с кремнеземистыми заполнителями и разделяются на мелко- и крупнозернистые. Чаще используются мелкозернистые смеси, при производстве которых используются малофракционные кварцевые пески. Плотность – 1800-2200 кг/м 3 . Преимущества этого строительного материала, по сравнению с цементным бетоном: однородная структура и меньшая стоимость. Прочностные характеристики материала прямо пропорциональны процентному содержанию кварцевого песка с мелким зерном. Тяжелый силикатный бетон востребован при изготовлении панелей перекрытий, колонн, лестничных маршей и площадок, возведении стен, производстве железнодорожных шпал с армирующими элементами.

Изготавливаются с кремнеземистыми заполнителями и разделяются на мелко- и крупнозернистые. Чаще используются мелкозернистые смеси, при производстве которых используются малофракционные кварцевые пески. Плотность – 1800-2200 кг/м 3 . Преимущества этого строительного материала, по сравнению с цементным бетоном: однородная структура и меньшая стоимость. Прочностные характеристики материала прямо пропорциональны процентному содержанию кварцевого песка с мелким зерном. Тяжелый силикатный бетон востребован при изготовлении панелей перекрытий, колонн, лестничных маршей и площадок, возведении стен, производстве железнодорожных шпал с армирующими элементами.

Виды и характеристика

Бесцементный бетон классифицируется по объемной массе и распределяется на такие разновидности:

  • Тяжелый состав. Имеет крупный заполнитель в виде гравия, песка и щебня. Из такого класса смеси формируются крупногабаритные конструкции, прочность материала — 60 Мпа.
  • Легкий. Основа состава — керамзит и вермикулит. Используется для возведения перегородок, внутренних стен.
  • Ячеистый материал. Имеет пористую структуру. Характеризуется наличием пузырьков воздуха по периметру изделия. Рекомендован для эффекта теплоизоляции.

В зависимости от рецептуры приготовления силикатного материала разделяют специальный и конструкционный бетона.

Бетон без цемента разделяется на виды, каждый из которых наделен уникальной технологической рецептурой приготовления и отличается индивидуальными специфическими свойствами:

  • Специальный бетон. Его прочность достигает от 8 до 75 кг/м3.
  • Конструкционный. В свою очередь разделяется на материалы, что имеют среднюю прочность, от 900 до 2500 кг/м3, на низкопрочные — от 2 до 5 и водоотталкивающие смеси.


Распространенный вид — тяжелый класс силикатного бетона. Он отличается от традиционного наличием кварцевого песка, что имеет мелкочастичную структуру. Виды тяжелого состава используются в таких целях:

Тяжелые бетоны

Отличие тяжелого вещества от обычного — наличие кварцевого песка. Он является основным компонентом мелкозернистой смеси. Песок обеспечивает устойчивость, плотность, морозостойкость конструкции из тяжелого силикатного вещества. В некоторых случаях применяют известняковые добавки, кремнеземистые смеси и прочее. Применение: строительные работы (ЖБИ, элементы конструкций), отделка наружных конструкций, гражданские постройки, жилые сооружения.

Недостаток: низкий модуль упругости, находится на несколько ступеней ниже цементных образований. Это негативно сказывается на деформациях при кратковременных значительных нагрузках. Обратите внимание, что ползучесть силикатного камня на порядок ниже цементного.

Преимущество: отсутствие необходимости в армировании (это вызвано значением суммарных деформаций).


Недостаток: низкий модуль упругости, находится на несколько ступеней ниже цементных образований. Это негативно сказывается на деформациях при кратковременных значительных нагрузках. Обратите внимание, что ползучесть силикатного камня на порядок ниже цементного.

Читайте также:  Реально ли собрать вакуумный солнечный коллектор своими руками?

Силикатные бетоны и изделия из них

Силикатные бетоны подразделяются на плотные и легкие ячеистые. Основным сырьем для плотных бетонов служат известь и кварцевый песок. Рекомендуется применять быстрогасящуюся кальциевую известь с активностью более 70 %. Лучшим является песок с шероховатой поверхностью.

Для повышения прочности бетона применяют известково-кре-мнеземистое вяжущее, получаемое совместным помолом негашеной извести и кварцевого песка до удельной поверхности 3000–5000 см²/г, взятых в соотношении от 30 : 70 до 50 : 50 %.

Тонкомолотый песок оказывает большое влияние на свойства бетонов. С возрастанием его дисперсности повышаются прочность, морозостойкость изделий.

В качестве кремнеземистого компонента вместо кварцевого песка могут применяться кварцево-полевошпатовые пески, металлургические шлаки, золы ТЭС, нефелиновый шлам, отходы производства аглопорита, керамзита.

Вода не должна содержать вредных примесей.

Силикатные бетоны могут изготавливаться мелкозернистыми только на природных и дробленых песках и с применением крупных плотных или пористых заполнителей с размером зерен не более 20 мм.

В качестве заполнителей рекомендуется применять щебень из доменного шлака, щебень и песок аглопоритовые, гравий и песок керамзитовые, щебень и песок пористый из металлургического шлака. К заполнителям предъявляются те же требования, что и для цементного бетона.

Изделия из силикатного бетона изготавливаются чаще всего на оборудовании для изготовления изделий на цементах.

Производство изделий включает следующие технологические операции: приготовление известково-кремнеземистого вяжущего, силикатобетонной смеси, формование изделий и тепловлажностную их обработку в автоклавах.

Измельчение извести с песком до необходимой дисперсности, т.е. получение известково-кремнеземистого вяжущего, производится в шаровых мельницах. Приготавливают смесь в бетоносмесителях принудительного смешивания. Основной способ формования изделий – вибрирование. Тепловлажностную обработку силикатных изделий выполняют в автоклавах, которые представляют собой цилиндрические горизонтальные сосуды диаметром 2,0–3,6 и длиной 19–40 метров, закрываемые герметически крышками. По длине автоклава проложены рельсы, по которым загружаются вагонетки с изделиями. Автоклав оборудован магистралями для впуска и выпуска насыщенного пара. После загрузки автоклава крышки закрывают и впускают пар по определенному режиму. Температура пропаривания составляет 174,5–200 °С, давление, как правило, – 0,8–1,3 МПа. Общее время тепловлажностной обработки – 8–17 часов.

Плотные силикатные бетоны по прочности на сжатие подразделяются на классы от В5 до В60; на марки: по морозостойкости от F35 до F600, по водонепроницаемости от W2 до W10, по средней плотности от Пл 1000 до Пл 2400.

Из плотного силикатного бетона изготавливают железобетонные плиты для покрытия городских дорог, трамвайных путей, тротуарные плитки, бортовые камни, несущие армированные конструкции для промышленного и гражданского строительства, которые успешно заменяют конструкции из цементного железобетона. Имеется опыт применения тяжелых силикатных бетонов для изготовления шпал с предварительно напряженной арматурой, тюбингов для тоннелей.

Арматурная сталь в конструкциях, эксплуатируемых при относительной влажности воздуха до 60 % , не корродирует. При повышенной влажности среды арматуру необходимо защищать от коррозии.

Силикатные бетоны на пористых заполнителях – керамзите, аглопорите, шлаковой пемзе и других применяются для изготовления ограждающих конструкций зданий.

Ячеистые силикатные бетоны с пено-и газообразователями освещены в подразд. 4.9.2.

Кирпич и камни силикатные

Кирпич и камни силикатные представляют собой мелкоштучные каменные материалы, изготавливаемые прессованием увлажненной смеси кварцевого песка, извести с последующим твердением в автоклавах. Воздушной извести берется 6–8, кварцевого песка – 92–94 и воды – 7–9 % от общей массы сухих составляющих. Часть песка может заменяться пористыми заполнителями.

В зависимости от способа гашения извести различают силосный и барабанный способы производства. По силосному способу увлажненную смесь извести с песком помещают в силосы, где выдерживают в течение 4–8 часов. По барабанному способу гашение происходит в течение 30–40 мин паром во вращающихся барабанах. Затем из полученной смеси на механических прессах при давлении 15–20 МПа прессуют сырец, который потом пропаривают в автоклавах.

По назначению кирпич и камни силикатные подразделяются на рядовые и лицевые.

Рядовые применяют для кладки каменных наружных и внутренних стен зданий и сооружений. Лицевые – для облицовки наружных и внутренних стен.

Кирпич и камни в зависимости от размеров подразделяются на виды, приведенные в таблице 7.1.

Таблица 7.1Виды и размеры кирпича и камней

Вид изделияНоминальные размеры, мм
длинаширинатолщина
Кирпич одинарный
Кирпич утолщенный
Камень
Камень модульных размеров
Камень укрупненный
Камень перегородочный
Камень перемычечный

Кирпич изготавливается полнотелым и пустотелым, камни – только пустотелыми.

Лицевые поверхности могут быть рифлеными или иметь колотую фактуру.

Масса утолщенного кирпича должна быть не более 4,3 кг, камня – не более 21,0 кг. По согласованию предприятия-изготовителя с потребителем их масса может быть больше.

По прочности кирпич и камни имеют марки 75, 100, 125, 150, 175, 200, 250 и 300, по морозостойкости марки F15, F25, F35 и F50, водопоглощение должно быть не менее 6 %.

Лицевые изделия должны иметь марку по прочности не ниже 125, по морозостойкости – не менее 35.

Применяют кирпич и камни для кладки каменных стен с нормальным режимом эксплуатации. Нельзя их применять для кладки фундаментов, цоколей ниже гидроизоляционного слоя, стен зданий с мокрым режимом эксплуатации, для кладки печей, труб.

Лицевые поверхности могут быть рифлеными или иметь колотую фактуру.

Силикатный бетон

Усовершенствование методов изготовления бетонных смесей позволило добиться многообразия данного вида стройматериала. К особому классу можно отнести силикатный бетон, принципиально отличающийся заменой цементного компонента на известь.

Таблица 1 – Классификация и свойства силикатного бетона

Силикатный бетон: общая характеристика

Силикатный бетон представляет собой бесцементный бетон автоклавного твердения. Вяжущим в нем является смесь извести с тонкомолотым кремнеземистым материалом. В процессе автоклавной обработки известь вступает с кремнеземистым компонентом в химическую реакцию, в результате которой образуются гидросиликаты кальция, скрепляющие зерна заполнителя в прочный монолит. В зависимости от вида кремнеземистого компонента н различают следующие виды вяжущего вещества- известково- м кремнеземистые, состоящие из тонкомолотых извести и песка; и известково-шлаковые, получаемые совместным помолом металлургического или топливного шлака и извести; известково-зольные, и состоящие из тонкомолотой извести и топливных зол; известково-аглопоритовые, получаемые из извести и отходов производства искусственных пористых заполнителей, и известково-белитовые, состоящие из тонкомолотых продуктов низкотемпературного обжига и нзвестково кремнеземистом шихты и песка или белитового (нефелитового) штама и песка Соотношение извести и кремнеземисто- к го компонента составляет от 30:70 до 50:50%.

Силикатные бетоны: виды,свойства фото,изготовление,применение

Бетон остается одним из основных строительных материалов. Из-за целого комплекса преимуществ, отказ от бетона невозможен. К бетону примешивают дополнительные ингредиенты, что способствует увеличению качественных характеристик бетона, технических параметров, структуры. Среди подобных “бетонных примесей” выделяют силикатный бетон.

  • Водоотталкивающий состав. Смесь пропитывают, карбонизируют, покрывают кремниевыми составами, отторгающими влагу.
  • Устойчивость агрессивным внешним факторам.
  • Большее количество соединений оксида кальция (из-за шлаковых добавок).
  • Наличие искусственных пор, заполненных газом, водой, пеной.
  • Наличие алюминиевой пудры, перекиси водорода в составе (выступают в роли газообразователей).
Добавить комментарий