Самостоятельное регулирование работы системы отопления: обзор устройств и методик

Наладка и регулировка систем водяного отопления

В статье приведён принцип работы систем водяного отопления. Рассмотрены методы регулировки систем водяного двухтрубного отопления, которые осуществляются при наладке. Выделены преимущества и недостатки приведённых методов.

Системы отопления, вентиляции и кондиционирования предназначены для создания и поддержания комфортных условий микроклимата для эффективной и плодотворной жизнедеятельности человека. Эффективная работа систем ОВиК во многом зависит от грамотно выполненного проекта, качественного монтажа и правильной эксплуатации. Отсюда также следует, что грамотный проект, качественный монтаж и правильная эксплуатация систем ОВиК возможна только при наличии соответствующих знаний и навыков у проектировщика.

Данная статья посвящена вопросу регулировки систем отопления (СО).

Система отопления предназначена для поддержания в помещении комфортной (требуемой) температуры воздуха. Также можно сказать, что работа системы отопления направлена на компенсацию теплопотерь в помещении. Достигается это возвратом в него требуемого количества тепла. Последнее генерируется источником тепла (котлом, котельной, тепловым насосом и др.) транспортируется теплоносителем (вода, воздух, пар и т.п.) по теплопроводам (трубопроводы, воздуховоды) к потребителю (отопительному прибору, тёплому полу, теплообменнику, калориферу и т.п.). В целом систему отопления можно представить следующим образом — рис. 1.

Основываясь на основной задаче системы отопления — обеспечении потребителя требуемым количеством тепла — можно говорить об эффективности работы системы отопления. Оценивать эффективность можно по температуре в помещении, температуре и давлению теплоносителя, наличию его утечек, а также по равномерности распределения тепла по объекту. При этом эффективность работы системы отопления нас интересует как при вводе в эксплуатацию, так и в ходе использования.

Системы водяного отопления с принудительной циркуляцией в обязательном порядке включают в себя следующие элементы:

  • источник тепла (котёл);
  • отопительный прибор;
  • циркуляционный насос;
  • расширительный бак;
  • трубопроводы, фитинги и трубопроводную арматуру (вентили, краны, воздухоотводчики, предохранительные клапаны и т.п.);
  • контрольно-измерительные приборы и система автоматизации.

Отсутствие любого из этих элементов делает систему неработоспособной — полностью или частично. Нет расширительного бака — не будет происходить компенсация температурного расширения теплоносителя, но появится статическое давление. Это, в свою очередь, приведёт к наличию течей в системе, её нестабильной работе, сбоям в автоматике, если она есть. Нет насоса — практически полностью остановится циркуляция теплоносителя, к потребителю не дойдёт нужное количество тепла, и он замёрзнет. Нет котла — нет тепла. Нет отопительного прибора — мало тепла (функцию отопительных приборов могут выполнять трубопроводы системы).

Наладка

Наладка — это подготовка к использованию. Синонимы слова наладка: настройка, отлаживание, починка, регулировка, проверка, поправление. Антонимы: разборка, поломка, авария.

Итак, система отопления заполнена и опрессована. Самое время приступить к регулировке, тепловым испытаниям и вводу её в эксплуатации. Перед регулировкой должны быть выполнены следующие работы:

  • смонтирована система отопления;
  • произведена проверка её соответствия проекту;
  • система промыта и заполнена водой;
  • произведена пусконаладка основного оборудования.

В процессе пусконаладки предстоит сделать следующее:

  • включить основное оборудование;
  • внимательно прислушаться и присмотреться к происходящему вокруг — посторонние шумы, вибрации, наличие утечки воды, запах гари, яркие вспышки и многое другое должны насторожить.

Может быть, пора бежать отсюда? Или необходимо открыть закрытый вентиль у насоса? А может, после нажатия кнопки «Вкл» ничего не изменилось, потому что забыли включить штекер в розетку или не открыли вентиль подачи газа на котёл?

Ситуации бывают разные и, чтобы быть готовыми ко всему, прежде всего нужно понимать и представлять устройство системы отопления, наладку которой осуществляется.

  • внимательно проконтролировать показания всех имеющихся контрольноизмерительных приборов;
  • настроить и отрегулировать различные контуры системы отопления;
  • не забыть подписать приёмо-сдаточный акт.

В общем случае процесс наладки можно разделить на несколько этапов, каждый из которых отвечает за настройку и регулировку определённой группы узлов системы:

  • наладка котельного агрегата или теплового пункта;
  • гидравлическая и тепловая регулировка системы отопления.

Гидравлическая и тепловая регулировка системы отопления

Регулировка систем осуществляется для обеспечения распределения проектных расходов теплоносителя по всем циркуляционным кольцам. Теплоотдачу СО можно регулировать двумя способами: качественно и количественно (рис. 2).

Качественное регулирование — это изменение теплоотдачи за счёт изменения температуры теплоносителя t1 и t2 [°C] и, соответственно, температурного напора отопительного оборудования ?t [°C].

Качественное регулирование осуществляется в котельной, индивидуальном тепловом пункте и смесительном узле. В котельной температура теплоносителя изменяется за счёт изменения количества сжигаемого топлива или смешивания теплоносителей; в ИТП при закрытой схеме — за счёт изменения расхода греющего теплоносителя; в ИТП при открытой схеме присоединения системы отопления и в узлах смешивания — смешиванием подающего и обратного теплоносителя.

Количественное регулирование — это изменение теплоотдачи за счёт изменения расхода теплоносителя G [кг/ч].

Количественное регулирование в первую очередь направлено на гидравлическую увязку системы, то есть настройку распределения потоков между циркуляционными кольцами.

Настройка системы отопление заключается в обеспечении равномерности прогрева системы отопления и равномерности распределения теплоносителя. В практике наладки и эксплуатации систем отопления применяются оба способа одновременно.

Итак, приступим к наладке небольшой двухтрубной системы отопления (рис. 3). Наша цель — обеспечить равномерное, требуемое распределение тепла.

Без регулировки системы отопления в системе наступит равновесие (то есть ?р1 = ?р2 = ?р3 = рразрег) и расход теплоносителя распределится так, как ему будет удобней и основной объём воды пойдёт по пути наименьшего сопротивления. Последнее объясняется тем, что данный путь будет пролегать через отопительный прибор №1, то есть G1 > G2 (G > G1тр, G

При передаче тепла Q от теплоносителя посредством отопительного прибора в помещение температура теплоносителя t2 понижается. Изменяем расход G — регулируется теплоотдача.

Данный метод применяется в достаточно простых системах, где используются балансировочные клапана без штуцеров.

Плюсы — доступность. Использование этого метода возможно в ситуациях, когда другие методы недоступны. Такой метод применяется, когда мастер ограничен в ресурсах (приборы, современные балансировочные и автоматические клапаны, «интеллект» и т.п.).

Минусы: данный метод является неточным, особенно в ситуациях, когда разность температур теплоносителя незначительна. То есть точность метода повышается с ростом температуры наружного воздуха. К некорректным результатам также приводит завышенная площадь отопительных приборов.

Проектный (расчётный) метод

Метод предварительной настройки клапанов основан на регулировке по результатам гидравлического расчёта при проектировании систем отопления.

Собственно, в первую очередь он осуществляется в процессе проектирования. При этом проектировщик производит увязку циркуляционных колец в ходе расчёта пропускной способности и настройки регулирующих клапанов.

Преимущества: наладчику достаточно выставить необходимую настройку, проверить расход теплоносителя и, в случае необходимости, произвести корректировку данных настроек.

Недостатки: не учитываются изменения, внесённые в процессе монтажа систем отопления, а их может быть предостаточно. Монтаж — коварная штука, и очень часто «взгляды» проектировщика и монтажника расходятся по ряду объективных и необъективных причин.

Пропорциональный метод

Метод основан на закономерностях отклонения потоков в параллельных участках системы при регулировании одного из них. Из курса гидравлики известно, что контуры трубопроводов могут соединяться параллельно, последовательно и разветвлённо. Каждый участок трубопровода имеет определённую характеристику сопротивления S [Па/(кг/ч)2]. В зависимости от способа соединения различных трубопроводов эти характеристики определённым образом суммируются.

При последовательном соединении данная зависимость имеет вид: S = S1 + S2, G1 = G2. При параллельном соединении:

Потери давления на участке определяются по следующему уравнению:

Известно, что в параллельно соединённых трубопроводах будут одинаковые потери напора. Соответственно, для системы (рис. 3) получим:

Предполагается, что регулировка одного из вентилей в контуре не ведёт к пропорциональному изменению параметров в остальных клапанах контура.

Между расходами воды в контурах системы существует пропорциональная зависимость — изменение сопротивления одного из клапанов влечёт за собой перераспределение расходов с сохранением пропорции между ними (рис. 3).

Алгоритм регулировки системы отопления пропорциональным методом:

1. Определяем циркуляционные кольца.

2. Выделяем главное циркуляционное кольцо.

3. Открываем вентиль основного циркуляционного кольца (при этом немного прикрываем остальные вентили контура). Если нет уверенности в том, какое циркуляционное кольцо главное, — оставляем открытыми.

4. Определяем существующую пропорцию между стояками или пропорцию между фактическими и проектными расходами в стояках (контурах).

5. Находим стояк или контур, относительно которого будем осуществлять регулирование (обычно это контур с наименьшим соотношением G/G1пр).

6. Затем методом последовательных приближений выставляется регулируемым вентилем расход в контуре 2 G/G1пр = n = G/G2пр и т.д.

7. На завершающем этапе регулируем основной вентиль, выставляя на нём соотношение Gф/Gпр = 1, и по закону пропорциональности в остальных контурах системы установится также соотношение G/G1пр = G/G2пр = 1.

Этот метод регулирования применяется в больших разветвлённых системах.

Плюсы: это возможность настройки сложных разветвлённых систем; возможность быстрой корректировки при регулировании проектным методом в случае изменений смонтированных систем относительно проекта. Минусы: наличие большого количества балансировочных вентилей и, как следствие, повышенные потери давления в системе; многократные измерения расходов теплоносителя в контурах; необходимость наличия измерительных приборов и времени.

Компенсационный метод регулировки

Данный метод базируется на рассмотренных в предыдущем разделе принципах гидравлики (является усовершенствованным пропорциональным методом).

Алгоритм регулировки системы отопления компенсационным методом:

1. Необходимо наличие не менее трёх человек. Наладчик 1 будет отвечать за регулировку основного (эталонного) клапана, наладчик 2 — настраивать клапана системы и контролировать расход в них, наладчик 3 — регулируя магистральный клапан, поддержит заданный перепад давления или расход на основном клапане (компенсирует перетоки).

2. На наиболее удалённом клапане наладчиком 1 устанавливается такой перепад давления, например — 3 кПа. Остальные клапаны контура, либо в целом системы остаются открытыми.

3. Наладчик 3 прикрывает удалённые клапаны до тех пор, пока не установится соотношение G = G1пр.

4. Наладчик 2 начинает регулировать клапан одного из второстепенных контуров и устанавливает G = G2пр.

5. Наладчик 3 по указаниям наладчика 1 компенсирует возникшие перераспределения потоков и пока у наладчика 1 не установится G = G1пр.

6. Наладчик 2 проверяет, установилось ли в контуре равенство G = G2пр. Если оно не установилось, то действия пунктов 4 и 5 повторяются.

7. Наладчик 2 начинает регулировать клапан последующего второстепенного контура и устанавливает на нём расход G = G3пр.

8. Наладчик 3 по указаниям наладчика 1 компенсирует возникшие перераспределения потоков, пока у наладчика 1 не установится G = G1пр.

9. Далее цикл повторяется вновь и вновь, пока не настроится вся система в целом.

Преимущества метода: настройка разветвлённых систем отопления за один этап; минимизация количеств измерений. Его недостатки: настройку желательно производить втроём; необходимо два дифференциальных манометра.

Выводы

Рассмотренные методы регулировки на практике целесообразно комбинировать, оперируя теми устройствами регулировки и контроля регулируемых параметров, которые доступны, а понимание пропорциональности перераспределения расходов в регулируемых участках способно облегчить процесс наладки.

Самостоятельное регулирование работы системы отопления: обзор устройств и методик

Во время проектирования системы отопления необходимо предусмотреть меры контроля температуры и давления. Для этого необходимо установить специальную арматуру и приборы. Как правильно отрегулировать систему отопления: батареи, давление и другие элементы? Сначала следует разобраться в принципах организации этих участков системы.

  1. Методы регулирования отопления
  2. Регулирование отопления частного дома
  3. Стабилизация давления в системе отопления
  4. Регулировка расширительного бака
  5. Как отрегулировать группу безопасности
  6. Кран Маевского
  7. Контроль температуры отопления
  8. Смесительные узлы
  9. Сервоприводы
  10. Советы по регулировке отопления

Методы регулирования отопления

Во время нагрева теплоносителя происходит его расширение и как следствие — увеличение объема. Поэтому до того как отрегулировать батареи отопления в квартире, нужно обеспечить общий контроль работы системы.

Для этого предназначены несколько типов приборов. Они условно разделяются на регулирующие и контролирующие. Первые предназначены для изменения текущих характеристик системы (давления и температуры) в сторону уменьшения или увеличения. Их устанавливают на определенном участке трубопровода либо для всей системы в целом. К контролирующим приборам относятся манометры и термометры, монтируемые вместе с регулирующими устройствами либо отдельно.

Как отрегулировать давление в системе отопления при работе твердотопливного и газового котла? Для этого нужно руководствоваться следующими принципами проектирования систем контроля:

  • Установка манометров (термометров) до и после котла, в распределительных коллекторах в самой высокой и низкой части системы;
  • При наличии циркуляционного насоса манометр устанавливается до него;
  • Обязательный монтаж расширительного бака. В закрытых системах он может быть мембранного типа, в открытых — негерметичный;
  • Предохранительный клапан и воздухоотводчик предотвратят критическое превышение давления в трубах.

Средние значения температуры воды в трубах не должны превышать 90 град. Давление же должно находиться в пределах от 1,5 до 3 атм. Возможно сделать систему с параметрами, превышающими заданные, но в этом случае потребуется выбрать специальные комплектующие.

Если не получается отрегулировать батареи отопления в квартире с помощью терморегулятора – скорее всего образовалась воздушная пробка. Для ее устранения необходим кран Маевского.

Регулирование отопления частного дома

Для собственников частных домов актуален вопрос: как отрегулировать двухтрубную систему отопления. В отличие от центрального теплоснабжения, на параметры автономного отопления влияют только внутренние факторы.

Главным из них является конструкция котла, виды используемого топлива и его тепловая мощность. Также возможность регулировки параметров теплоносителя напрямую зависит от следующих показателей системы:

  • Диаметр и материал изготовления труб. Чем больше сечение магистрали, тем быстрее будет происходить расширение воды в результате повышения температуры;
  • Характеристики радиаторов. До того как отрегулировать радиатор отопления, необходимо сделать его правильное подключение к трубопроводу. В дальнейшем с помощью специальных устройств можно уменьшать или увеличивать скорость и объем теплоносителя, проходящего через нагревательный прибор;
  • Возможность установки смесительных узлов. Они могут монтироваться для двухтрубной системы отопления и с их помощью уменьшается температура воды путем смешивания горячих и холодных потоков.

Для того чтобы узнать, как отрегулировать систему отопления в частном доме рекомендуется рассмотреть все возможные варианты.

Установку механизмов регулирования давления в системе отопления нужно предусмотреть еще на этапе проектирования. В противном случае даже небольшая ошибка при установке может привести к потере КПД всей системы.

Стабилизация давления в системе отопления

Расширение воды в результате нагрева является естественным процессом. В этом показателе давление может превысить критическое значение, что неприемлемо с точки зрения эксплуатации отопления. С целью стабилизации и уменьшения давления на внутренние поверхности труб и радиаторы нужно установить несколько элементов отопления. Отрегулировать систему отопления в частном доме с их помощью будет намного проще и эффективнее.

Регулировка расширительного бака

Представляет собой стальную емкость, разделенную на две камеры. Одна из них заполняется водой из системы, а во вторую нагнетается воздух. Значение давления в воздушной равно нормальному в отопительных трубах. В случае превышения этого параметра эластичная мембрана увеличивает объем водяной камеры, тем самым компенсируя тепловое расширение воды.

До того как отрегулировать перепад давления в системе отопления нужно проверить состояние и настройку расширительного бака. Отрегулировать давление в системе отопления можно, приобретя модель бака с возможностью его изменять в воздушной камере. В качестве дополнительной меры устанавливают манометр для визуального контроля этого значения.

Однако при значительном скачке давления этой меры будет недостаточно. Так можно отрегулировать перепад давления в системе отопления в том случае, если оно не превышает критическое значение. Поэтому рекомендуется установка дополнительных устройств.

Как отрегулировать группу безопасности

Эта группа приборов, включает в себя следующие элементы:

  • Манометр. Предназначен для визуального контроля работы системы отопления;
  • Воздухоотводчик. В случае превышения температуры воды 100 град избыток пара воздействует на седло клапана устройства, выпуская наружу воздух из труб;
  • Предохранительный клапан. Работает так же как и водухоотводчик, но нужен для слива избыточного теплоносителя из труб.

Как отрегулировать радиатор отопления с помощью этого блока? Увы, но он предназначен для предотвращения аварийных ситуаций во всей системе. Для батарей необходимо устанавливать другое устройство.

Кран Маевского

Конструктивно он схож с предохранительным клапаном. Особенностью являются небольшие размеры и возможность монтировать на патрубок радиатора с небольшим диаметром.

Для того чтобы правильно отрегулировать батареи отопления, нужно знать в каких случаях применяется кран Маевского:

  • Устранение воздушных пробок в радиаторах. Открыв клапан, выпускается воздух до тех пор, пока не потечет теплоноситель;
  • Настройка параметров критического значения давления. При возникновении аварийного расширения воды клапан открывается и происходит стабилизация давления в радиаторе.

Последняя функция является дополнительной и чаще всего не применяется. С этой задачей лучше всего справляется группа безопасности. Правильная регулировка отопления в доме должна включать в себя все вышеперечисленные элементы.

При самостоятельном регулировании двухтрубной системы отопления при работающем котле нужно постоянно отслеживать показания термометров и манометров.

Контроль температуры отопления

Важным параметром любой системы отопления является оптимальный температурный режим ее работы. Подходящим считается отношение горячего и остывшего теплоносителя 75/50 или 80/60. Однако такое значение не всегда приемлемо для определенных участков сети. Как правильно отрегулировать отопление в доме в таком случае? Необходима установка специального оборудования. Некоторые из них предназначены для регулировки радиаторов отопления.

Смесительные узлы

Их главным элементом является двух или трехходовой кран. Один из патрубков подключается к трубе отопления с горячей водой, второй к обратной. Третий монтируется на участок магистрали, где нужно обеспечить пониженный уровень температуры теплоносителя.

В качестве дополнительных смесительные узлы комплектуются датчиком температуры и термостатическим блоком управления. От датчика поступает сигнал об уровне нагрева теплоносителя и он открывает или закрывает смесительную задвижку, тем самым регулируя двухтрубную систему отопления. Чаще всего подобные механизмы устанавливают в коллекторы водяного теплого пола.

Если нужно отрегулировать отопление водяного теплого пола в многоквартирном доме — нужно учитывать температурный режим работы труб. Чаще всего он не превышает 45 град.

Сервоприводы

Как отрегулировать отопление в многоквартирном доме, если нет возможности самостоятельно изменять температуру воды в трубах? Для этого нужен монтаж специальной запорной арматуры. Можно ограничиться установкой простых кранов – с их помощью регулируется приток теплоносителя в радиаторы. Однако в таком случае регулировку придется выполнять каждый раз самостоятельно. Лучшим вариантом будет монтаж сервоприводов.

В конструкцию этого устройства входит термостат и сервопривод. Для работы необходимо выполнить следующие действия.

  1. Установить нужное значение температуры на термостате.
  2. Сервопривод будет автоматически отрывать или закрывать приток теплоносителя в радиатор.

Кроме подобных моделей можно приобрести эконом вариант, включающий в себя только термостат. В этом случае уровень регулировки будет не настолько точным. Но как отрегулировать систему отопления в многоквартирном доме, если установлены старые батареи? Есть модели терморегуляторов, которые предназначены для монтажа в чугунные радиаторы. Такая мера сделает настройку температурного режима к квартире более точной.

Для регулировки перепада давления в системе отопления нельзя использовать терморегуляторы. Они лишь ограничат приток теплоносителя в радиатор, не влияя на температурный режим всей системы.

Советы по регулировке отопления

Все вышерассмотренные устройства и приборы необходимы для нормальной работы отопления. Но помимо них нужно знать основные правила монтажа отдельных элементов, так как они напрямую влияют на работу всей системы. Регулирование батарей отопления в квартире начинается еще на стадии их установки.

Прежде всего нужно выбрать способ подключения. От него зависит КПД работы прибора и возможность установки терморегулятора.

Также следует учесть схему разводки труб. В однотрубной обязательно монтируется байпас (перемычка), которая необходима для перенаправления потока теплоносителя в случае ремонта или замены радиатора. В двухтрубной подключение каждого нагревательного элемента происходит параллельно. Поэтому в ней проще всего правильно отрегулировать батареи отопления.

Таким способом можно отрегулировать отопление в многоквартирном доме. Но для автономной системы важно знать правильность настройки котла.

Установка терморегуляторов на радиаторы

Котел, независимо от вида используемого энергоносителя, предназначен для нагрева воды в трубах. Именно от его правильной работы будет зависеть эффективность всей системы. Для того чтобы отрегулировать систему отопления в частном доме необходимо проверить следующие параметры котла:

  • Номинальная мощность. Можно воспользоваться соотношением, что на 10 м² помещения нужен 1 кВт тепловой энергии. Но это только в том случае, если тепловые потери в доме минимальны;
  • Отношение мощности котла к объему теплоносителя. В среднем для нагрева 15 литров воды понадобится 1 кВт энергии;
  • Возможность плавной регулировки работы котла. Такая функция присуща только для моделей, работающих на газе. У твердотопливных сложно уменьшить или увеличить степень теплоотдачи энергоносителя.

Правильность установки этих параметров скажется на точности регулирования радиаторов отопления. В комплексе это должно не только повысить безопасность работы всей системы, но и повысить ее КПД. В качестве дополнительной меры рекомендуется учитывать температуру на улице. Для этого монтируют выносной термометр, подключенный к котлу отопления или смесительному узлу. Это поможет уменьшить затраты на энергоноситель, оптимизировав его расход.

В видеоматериале можно посмотреть — как самостоятельно отрегулировать работу радиатора отопления:

Основы регулирования системы отопления

Данная статья открывает цикл материалов, который буден посвящен различным аспектам регулирования систем отопления – проектированию, расчетам, используемому оборудованию и сферам его применения. В этой статье остановимся на целях, общих принципах и особенностях регулирования систем водяного отопления.

Задачи регулирования в системах отопления.

Основной целью регулирования отопления является поддержание заданной температуры в помещении при изменяющихся внешних условиях. То есть, вне зависимости от уличной температуры, силы ветра, влажности и прочих условий, в нашем доме должен поддерживаться заданный тепловой комфорт.

Упрощенно, понятие процесса регулирования системы отопления можно охарактеризовать следующим образом:

Регулирование системы отопления – это комплекс мер по максимальному приближению теплоотдачи отопительных приборов к текущей потребности объекта в тепле для поддержания требуемой внутренней температуры при постоянном изменении внешних условий.

Так как в системах водяного отопления нужную нам температуру, как правило, обеспечивают приборы отопления (радиаторы, конвекторы, водяные теплые полы и т.д.), то для поддержания заданной температуры теплоотдача отопительных приборов должна иметь возможность изменяться в зависимости от изменений внешних условий. Если не рассматривать механическое ограничение теплоотдачи отопительного прибора, которое до сих пор иногда применяется в конструкции конвекторов (воздушная заслонка на конвекторе с кожухом), основными способами изменения теплоотдачи являются изменение расхода теплоносителя через прибор и/или изменение температуры теплоносителя.

Таким образом, главная цель регулирования – поддержание требуемой температуры в помещении трансформируется в две основные частные задачи:
– обеспечение расчетного расхода теплоносителя через приборы отопления;
– задание требуемой температуры теплоносителя.

Кроме того, нужно иметь в виду, что в процессе регулирования, как правило, меняются гидравлические режимы работы системы, что может приводить к нарушению стабильности работы и появлению нежелательных шумов. Поэтому в системе регулирования должны быть предусмотрены меры по предотвращению этих негативных явлений.

Суть процесса регулирования отопления.

В общих чертах, процесс регулирования заключается в том, что величина регулируемого параметра находится под постоянным контролем и сравнивается с каким-то заданным значением этого параметра или величиной другого параметра. И в зависимости от их значения подвергается регулированию. Назовем совокупность элементов и алгоритмов регулирования, участвующих в этом процессе регулировочным контуром. Стоит сразу отметить, что таких контуров в системе отопления может быть достаточно много. Примерами таких регулировочных контуров являются поддержание температуры в помещении с помощью отопительного прибора по комнатному термостату или с помощью термостатического клапана на радиаторе отопления, регулирование котловой температуры теплоносителя в зависимости от температуры наружного воздуха, поддержание заданной температуры теплоносителя в водяном теплом поле и так далее.

Замкнутый регулировочный контур

Рассмотрим простейший замкнутый регулировочный контур, состоящий из прибора отопления, комнатного термостата, выполняющего функции измерительного устройства и контроллера, а также сервопривода с термостатическим клапаном, в качестве исполнительного устройства.

Рис. Замкнутый процесс регулирования в системе отопления

В рассматриваемом контуре регулируемый параметр – температура воздуха в помещении (х), которая формируется под воздействием прибора отопления и некого возмущающего воздействия, например, открытого окна. Для примера, заданное на термостате значение температуры (w) примем равным 23°С, а значение временно сформировавшейся температуры – равным 21°С. Температура воздуха постоянно контролируется измерительным устройством, в качестве которого может служить датчик температуры, встроенный в комнатный термостат. Результат измерения передается на контроллер, который в нашем примере также встроен в термостат. Контроллер сравнивает измеренное значение (21°С) с заданным (23°С) и при наличии рассогласования, подаёт управляющий сигнал на сервопривод на открытие, либо закрытие термостатического клапана. Исполнительное устройство формирует управляющее воздействие (в нашем случае увеличение расхода теплоносителя) на радиатор отопления, вследствие чего его теплоотдача увеличивается и повышает температуру воздуха в помещении. Таким образом образовался замкнутый регулировочный контур, в котором температура в помещении является и регулируемым и контролируемым параметром, и в процессе регулирования влияет сама на себя.

Открытый регулировочный контур

Рассмотрим другой пример контура регулирования, достаточно распространенного в современных системах отопления. Это – так называемый, открытый контур.

Рис. Пример открытого регулировочного контура

Особенность открытого регулировочного контура заключается в том, что, в отличие от закрытого контура, контролируемая и регулируемая величины относятся к различным параметрам. В данном примере контролируемая величина – это температура наружного воздуха, регулируемая – температура теплоносителя, подаваемая в контур теплого пола.

Принцип работы такой схемы регулирования заключается в следующем. Температура наружного воздуха (контролируемая величина) регистрируется датчиком (1), в результате чего формируется сигнал (Y), уровень которого зависит от измеренной температуры. Сигнал поступает на измерительный модуль контроллера (2) (в нашем примере контроллер встроен в котел отопления). Одновременно с помощью датчика (3) регистрируется температура теплоносителя в контуре теплого теплого пола (регулируемая величина), сигнал (х) от которого также передается в измерительное устройство. В контролерре происходит оценка того, насколько температуры (уровни сигналов) соответствуют настройкам. Обычно, соответствие контролируемой и регулируемой температур задается с помощью диаграмм. И в случае выявления несоответствия, подается управляющий сигнал (Z) на сервопривод трехходового клапана (4), в результате чего изменяются пропорции смешения горячего и остывшего теплоносителя и, таким образом, изменяется температура в контуре теплого пола.

Методы самостоятельной балансировки водяного отопления в частном доме

Закон гидравлики: любая протекающая жидкость выбирает путь наименьшего сопротивления. В отопительной сети частного дома правило действует так: толкаемый насосом теплоноситель стремится пройти через первый радиатор либо самый короткий контур теплых полов. В результате отдаленные комнаты здания прогреваются значительно хуже. Для равномерного распределения потоков необходима гидравлическая балансировка системы отопления. Расскажем, как отрегулировать батареи и петли напольного обогрева своими руками.

  • 1 Когда нужно балансировать систему
  • 2 Инструменты и приборы для балансировки
  • 3 Регулировка радиаторной сети
  • 4 Теплые полы и лучевая разводка
  • 5 Заключение

Когда нужно балансировать систему

Теоретически, регулировка радиаторов отопления необходима в любом случае. Инженер-проектировщик, разрабатывая и рассчитывая водяную систему, закладывает расход теплоносителя на каждую батарею и контур напольного обогрева. После монтажа, заполнения и опрессовки трубопроводной сети исполнитель обязан отрегулировать подачу тепла, ориентируясь на расчетные параметры в проекте.

Важный момент. Расчет потребности в тепле и соответствующего расхода нагретой воды делается для самых неблагоприятных условий – минимальной уличной температуре. Поэтому вначале настройки все радиаторные и другие регулировочные вентили полностью открываются, а котел выводится в максимальный рабочий режим.

Поскольку среднестатистического домовладельца заботит лишь тепло и комфорт внутри жилища, самому браться за балансировку рекомендуется в таких случаях:

  1. Ближние к котлу батареи нагреваются заметно сильнее дальних радиаторов, соответственно, в комнатах жарко или прохладно (слишком большой перепад температур).
  2. Один из радиаторов издает явственный шум — журчание протекающей воды.
  3. Замоноличенные в стяжку трубы прогревают полы неравномерно.
  4. В процессе наладки новой отопительной разводки, собранной своими руками.

Если при грамотно смонтированном отоплении температура в дальних комнатах существенно ниже, система нуждается в балансировке

Примечание. Подразумевается, что арматура, оборудование и приборы отопления подобраны правильно, система заполнена теплоносителем, воздушные пробки и прочие дефекты отсутствуют. Иначе заниматься гидравлической балансировкой бессмысленно – получите нулевой результат.

Когда не следует регулировать раздачу теплоносителя батареям:

  1. Если радиаторная сеть и теплые полы работают без нареканий. Лишний раз крутить вентили не стоит – по неопытности можете сделать хуже.
  2. При выявлении различных неполадок – воздух в батареях, протечка, засор радиаторных либо балансировочных вентилей, разрыв мембраны расширительного бака и тому подобное. Сначала устраните неисправность и проверьте работоспособность отопления. Возможно, регулировка не понадобится.
  3. Категорически не рекомендуется вмешиваться в работу центрального отопления многоквартирного дома, врезать в общие стояки дополнительные краны и клапаны. Исключение – многоэтажные новостройки с индивидуальными тепловыми вводами в каждую квартиру.

Также не рекомендуется «прижимать» проток через батарею с помощью обычного шарового крана. Нормальное положение штока – полностью открыт либо закрыт, в промежуточной позиции арматура долго не прослужит.

Проток воды регулируется исключительно балансовыми кранами, шаровые открыты на 100%

Инструменты и приборы для балансировки

Чтобы самостоятельно произвести регулировку радиаторов отопления и теплых полов частного дома, понадобится минимум приспособлений:

  • термометр электронный контактный;
  • отвертка;
  • барашек или ключ для вращения штока балансировочного клапана (обычно применяется шестигранник);
  • лист бумаги, карандаш.

Справка. Профессиональные сантехники часто используют тепловизор, дающий ясную картину прогрева всех отопительных приборов. Аппарат дорогостоящий, так что обойдемся более простыми средствами.

Вместо указанного термометра допускается использование дистанционного (бесконтактного) пирометра. Учтите: температуру блестящих поверхностей прибор измеряет с небольшой погрешностью. Замечание касается радиаторов с новым лакокрасочным покрытием.

Если у вас отсутствует схема разводки по жилому зданию, перед началом работ стоит зарисовать ее на бумаге. Эскиз поможет разобраться в очередности подключения батарей к магистралям и отдаленности от помещения топочной. Также сделайте промывку грязевика на входе в котел и разогрейте систему до температуры 70—80 °С независимо от уличной погоды.

Большим подспорьем в настройке является современный циркуляционный насос Grundfos Alpha 3, который через мобильное приложение точно показывает глубину регулировок. Минус – приличная цена агрегата (начинается от 240 у. е.).

Регулировка радиаторной сети

Метод балансировки, практикуемый нашим экспертом, одинаково подходит для закрытых однотрубных и двухтрубных систем отопления загородных коттеджей. Коллекторная разводка и теплые полы регулируются другим способом, о чем мы расскажем в следующем разделе.

Суть методики заключается в измерении температуры поверхности всех радиаторов и устранении разницы путем ограничения расхода теплоносителя балансировочными кранами. Как отрегулировать батареи отопления, пользуясь термометром:

    Прогрейте теплоноситель до 70—80 °С, полностью откройте все регулировочные клапаны. Если котел не показывает реальную температуру воды на подаче, определите ее сами, приложив измеритель к металлическому выходному патрубку.

Изначально кольцо предустановки клапана настраивается на максимальный проток

  • Замерьте температуру поверхности первого на подаче радиатора в двух местах – около подающей и обратной подводки. Если разница лежит в пределах 10 градусов, батарея прогревается нормально.
  • Повторите операцию на всех отопительных приборах, записывая показания. Двигайтесь вдоль каждой ветви отопления, поочередно регистрируя температуру батарей вплоть до последней.
  • Если разность температур на подаче первого и последнего радиатора не превышает 2 °С, прикройте вентили первых двух батарей на 0.5—1 оборот и повторите замеры.

    Замер делается на подающем и обратном патрубке, максимально допустимая разница — 10 градусов

  • Когда разница достигает 3—7 градусов, регулировочные краны первых обогревателей закрываются на 50—70% (считайте по оборотам вентилей), средних – на 30—40%, последние приборы остаются полностью открытыми.
  • Обождите 20—30 минут, позволив батареям прогреться после новых настроек, затем повторите измерения. Задача – достигнуть нормальной разницы 2 °С (для протяженных магистралей допускается 3 градуса) между последним и первым прибором.
  • Повторяйте процедуру настройки, закручивая балансовые вентили на четверть или пол-оборота, пока не добьетесь одинакового прогрева всех батарей. «Прослушайте» каждый радиатор на предмет шума, указывающего на повышенный расход теплоносителя.
  • Важный момент. Не увлекайтесь чрезмерным закручиванием кранов, экономии таким образом не получите. Сравнивайте температуру на входе и выходе обогревателя – если разность превысит 10 °С, вентиль нужно отпускать. Из-за слишком малого расхода теплоносителя в комнате станет холодно.

    Приблизительная регулировка батарей закрытой двухтрубной системы показана на примере схемы отопления двухэтажного дома. Почему приблизительная: число закрываемых батарей и количество оборотов крана сугубо индивидуально для каждой разводки, необходимо разбираться по месту. Если сомневаетесь в правильности своих действий, придавливайте теплоноситель постепенно, делая пол-оборота вентиля и повторяя замеры.

    Как правило, однотрубная «ленинградка» из 3—4 батарей не нуждается в балансировке, достаточно слегка «прижать» первый радиатор. В попутной разводке (петле Тихельмана) нужно ограничивать первый и последний прибор. Нагляднее порядок регулировки покажет эксперт на видео:

    Теплые полы и лучевая разводка

    Поскольку контуры напольного обогрева и радиаторы лучевой схемы подключаются к общей гребенке, балансировка производится непосредственно на коллекторе. Способ настройки зависит от наличия ротаметров – прозрачных колб расходомеров, устанавливаемых на подающей или обратной линии.

    Чтобы правильно настроить подачу теплоносителя по ротаметрам, следует рассчитать проток воды по каждой петле по формуле:

    • G – массовый расход нагретой воды, протекающей по контуру, кг/ч;
    • Q – количество тепла, которое должен выделить контур либо радиатор в помещение, Вт;
    • Δt – разница температур на входе и выходе из петли, принимается расчетное значение 10 °С.

    Мощность одного напольного контура Q определяется исходя из потребности в тепле отдельного помещения. Параметр считается по удельному соотношению 100 Вт/м² площади комнаты либо по методике вычисления нагрузки на отопление. Шкалы расходомеров размечены в л/мин, значит, результат нужно разделить на 60.

    Пример расчета. На обогрев комнаты площадью 10 квадратов требуется 1 кВт теплоты. Потребление теплоносителя составит 0.86 х 1000 / 10 = 86 кг/ч или 86 / 60 ≈ 1.43 л/мин.

    Уточнение. Если помещение большой площади поделено на 2 одинаковых греющих монолита с отдельными водяными петлями, расчетное значение расхода тоже делим пополам.

    Дальнейшая балансировка петель теплых полов производится согласно инструкции:

    1. В заполненной и опрессованной системе включите циркуляционный насос напольного отопления. Котел запускать не обязательно.
    2. С помощью колпачков ручной регулировки закройте все термостатические вентили на второй части гребенки.
    3. Полностью откройте первый вентиль и настройте соответствующий ему ротаметр. Нужный объем протока выставляется вращением нижнего кольца расходомера.
    4. После настройки снова закройте вентиль и переходите к следующему контуру. В конце откройте все регуляторы и еще раз проверьте расход воды по ротаметрам.

    Справка. На коллекторах разных производителей расходомеры ставятся на подающей либо обратной гребенке (конструктивно они тоже отличаются). Для регулировки максимального протока расположение ротаметров роли не играет.

    Батареи лучевой разводки балансируются аналогичным образом. Для верности можно совместить 2 варианта – по расчетному расходу и температуре поверхности радиатора (способ описан в предыдущем разделе).

    Схема регулирования потока ротаметром. Расход через каждый контур показывают контрольные шайбы в прозрачных колбах, единица измерения – литры в минуту

    Если в целях экономии вас угораздило купить коллектор без ротаметров, настройка растянется на несколько дней. Задача – добиться одинаковой температуры в обратных трубопроводах всех петель. То есть, первичная установка делается примерно по мощности и длине контура, затем измеряется температура обратки и корректируется величина протока.

    Для проверки балансировки теплого пола надо запустить отопительный котел. Негативный момент: после корректировки расхода придется ждать несколько часов, пока толща бетона прогреется, а температура обратных подводок стабилизируется.

    Заключение

    Радиаторная отопительная сеть с ветвями небольшой протяженности балансируется без особых проблем. Если длина плеч двухтрубной разводки сильно разнится, задача несколько усложняется. Но не стоит волноваться – перепад 3 градуса между последним и первым радиатором в данном случае считается нормой. Учтите один нюанс: балансировка отопления ведется при максимальном нагреве системы, в рабочем режиме температура воды снизится до 50…60 °С, разность 3 °С тоже уменьшится.

    Системы управления отоплением – от ручного к погодозависимому

    В настоящей статье мы решили выяснить, в чем заключаются преимущества современной погодозависимой автоматики, управляющей отопительным котлом. В силу того, что объективно оценить достигнутый в этой области прогресс возможно только в сравнении, рассмотрим основные существующие системы, а заодно познакомимся с протоколом OpenTherm и модулирующими газовыми горелками. Как говорится, вперёд, а выбор уже будет за вами!

    Ручное управление отопительным котлом

    Самым распространённым способом управления отопительным котлом было ручное регулирование температуры теплоносителя (надо сказать, что многие котлы до сих пор управляются именно так). Автоматизация была простая, но эффективная – встроенный в котёл термостат вручную настраивался на определенную температуру циркулирующего в системе теплоносителя, например 50 градусов (см. рис.1).

    Рис.1. Ручное регулирование температуры теплоносителя

    Предположим, при стабильных внешних условиях при этом значении в помещении достигается температура 23°С. В случае постепенного разогрева теплоносителя термостат подаёт команду на выключение газовой горелки, а если теплоноситель остывает – то на включение. Этот циклический процесс объясняет «волнистость» оранжевого графика температуры теплоносителя и зеленого графика комнатной температуры. Если же температура на улице резко упадёт, а термостат продолжит работать в прежнем режиме (50°С), то температура в помещении неизбежно понизится. Для исправления этой ситуации требуется вмешательство человека, который должен повысить значения температуры теплоносителя до более высоких значений.

    Неудобство этого способа регулирования налицо – это вовлеченность человека в работу системы отопления и непрерывная работа автоматики розжига горелки.

    Плюсы:

    • Не нужно доплачивать за автоматику управления, т.к. она входит в стоимость котла;
    • Высокая точность поддержания стабильной температуры в доме при неизменной температуре на улице.

    Минусы:

    • Необходимость регулярной ручной регулировки температурного режима работы котла;
    • Из-за постоянно работающего насоса происходит повышенный расход электроэнергии;
    • Частые циклы включения/выключения быстрее изнашивают автоматику котла.

    Управление работой котла комнатным термостатом

    Другим известным, но более современным способом автоматизировать работу отопительного оборудования и освободить от контролирующих функций человека, является применение в отопительной системе релейного комнатного термостата.

    В настоящее время существует огромное количество моделей комнатных термостатов, но всех их объединяет один общий принцип работы – прибор измеряет температуру в жилом помещении и, в зависимости от окружающих условий и заданного целевого значения температуры, управляет розжигом и выключением газовой горелки котла. Однако инерционность тепловой системы вызывает большие задержки в реагировании на команды комнатного термостата. И часто температура в жилом помещении существенно отличается от заданной (в сторону повышения или понижения), что и отображается на зеленом графике комнатной температуры в виде появления красных (перегрев) и синих (недогрев) сегментов (см. рис.2).

    Рис.2. Регулирование температуры релейным термостатом

    Следует заметить, что для более быстрого нагрева на котле выставляют более высокую температуру теплоносителя (в нашем случае 80°С). Отсюда и некая «серповидность» формы оранжевого графика – мы видим быстрый нагрев до 80°С, а затем отключение горелки и постепенное остывание до момента, когда комнатный термостат снова подаст команду на включение горелки. Если внешняя температура начнет падать, то термостат начнет чаще включать горелку, и нижняя граница температуры теплоносителя (красная точка «ВКЛ.» на оранжевом графике) будет расти, что компенсирует понижение уличной температуры. Таким образом, созданная обратная связь позволила стабилизировать комнатную температуру без участия человека, хотя и возможны её кратковременные циклические «перегревы» и «недогревы».

    В случае применения релейного комнатного термостата автоматика розжига работает значительно меньше, чем при ручном управлении, но из-за высокого порогового значения температуры теплоносителя происходит перерасход газового топлива. Остаётся добавить, что компенсировать этот недостаток удаётся «интеллектуализацией» комнатных термостатов. Так, современные программируемые модели этих приборов позволяют запрограммировать различные суточные и недельные режимы работы. Например, ночью целевая температура в комнатах может понижаться, а днём – повышаться. Аналогично в будни и выходные дни. Наличие гибкого графика целевой температуры позволяет добиться значительной экономии газа. Яркими представителями приборов этого семейства являются термостаты от компании БАСТИОН серии TEPLOCOM TS.

    Программируемый комнатный термостат автоматически изменяет температуру по графику, установленному пользователем

    Плюсы:

    • Нет необходимости ручного управления работы котла;
    • По сравнению с ручным управлением, уменьшается количество циклов включения/выключения котла, что благотворно сказывается на увеличении ресурса автоматики розжига;
    • Автоматическое отключение насоса при выключенной горелке приводит к существенной экономии электроэнергии.

    Минусы:

    • Необходимо дополнительно покупать и монтировать термостат;
    • В доме возможны ощутимые колебания температуры воздуха.

    Модулирующие горелки, протокол OpenTherm и погодозависимая автоматика

    На сегодняшний день самыми современными и технологически совершенными системами управления отоплением являются приборы, работающие под управлением протокола OpenTherm.

    Не вдаваясь в узкоспециализированные подробности, рассмотрим три главных особенности, которые отличают оборудование с OpenTherm от описанного выше.

    Особенность первая: управление модуляцией пламени

    Появление новых газовых котлов с горелками, способными управлять модуляцией пламени, открыло новые возможности в организации экономичного и эффективного отопления. Поясним, что модуляцией пламени называется регулирование мощности нагрева. При слишком большой мощности происходит частое включение и выключение котла (тактование), а при малой – достижение заданной температуры делается невозможным. Т.е. наилучшей модуляцией пламени считается уровень горения, при котором котел не выключается, и достигнуто заданное значение температуры. Иными словами, управление модуляцией пламени – это способность автоматики котла, в зависимости от внешних условий, оптимально изменять интенсивность горения пламени горелки, не выключая её. Ни один из описанных выше способов управления котлом не может управлять модуляцией пламени. Для работы с новыми горелками был придуман протокол OpenTherm, который позволил эффективно объединить функционирование новых горелок с возможностями «умной» погодозависимой автоматики и электроники.

    Особенность вторая: работа с автоматикой

    По сути дела, OpenTherm – это мост, который был проложен между производителями котлов и производителями прочей электроники и автоматики. Единый, не зависящий ни от кого, протокол стандартно описывает все основные команды по работе с модулирующими горелками. Это позволяет подключить к нему самое разнообразное оборудование: от термостата до программируемых термоконтроллеров, к которым может быть присоединено большое количество термодатчиков. Современные термоконтроллеры представляют собой программируемые приборы, которые в состоянии обрабатывать показания термодатчиков, расположенных как в различных зонах отапливаемого объекта, так и на улице. Теплоконтроллер поддерживает заданное значение целевой температуры и может его изменять в зависимости от команд пользователя, времени суток или дня недели. Анализируя полученные данные температуры снаружи и внутри помещения, контроллер задает погодозависящий режим работы для модулирующей горелки котла и насосов (см. рис.3).

    Рис.3. Регулирование температуры теплоинформатором Teplocom Cloud

    На графике мы можем видеть, что горелка практически не выключается, а только меняет интенсивность своего горения. При этом, вне зависимости от внешних условий, график целевой температуры меняется крайне незначительно и лежит в границах гистерезиса теплосистемы. Дополнительными преимуществами этой системы управления является заметное повышение ресурса работы горелки (отсутствуют циклы розжига, быстрого нагрева и остывания), а также достигается существенная экономия газового топлива.

    Особенность третья: доступ к настройкам автоматики и фиксирование ошибок

    Наличие «умного» управления и существование обратной связи между котлом и управляющим оборудованием открывает третью особенность протокола OpenTherm – возможность по одному протоколу получить полный доступ к настройкам автоматики котла и произвести их изменение с любого управляющего устройства (смартфона). Дополнительно открывается доступ к информации обо всех ошибках, случившихся при работе тепловой системы, что даёт неоценимый инструмент для обслуживающего и контролирующего работу оборудования персонала.

    Плюсы:

    • Минимальное колебание температуры воздуха в доме вне зависимости от температуры на улице, что обеспечивает максимальный комфорт;
    • Минимальный расход топлива по сравнению с другими методами управления;
    • Корректировка температуры идет за счет изменения модуляции пламени горелки, что минимизирует количество циклов включения/выключения;
    • Возможность удаленного мониторинга состояния котла и изменения его настроек.

    Минусы:

    • Более высокая цена по сравнению с другим оборудованием, что компенсируется за счет меньшего потребления газа.

    Теплоинформатор TEPLOCOM CLOUD

    В этой статье мы рассмотрели основные способы управления отопительным котлом – от ручного до автоматического, при помощи модулирующих горелок с OpenTherm. Одним из современных устройств, которые способны реализовать новейшие технологии по управлению системой отопления, является теплоинформатор TEPLOCOM CLOUD. Это электронный прибор, расширенный функционал которого далеко выходит за рамки простого поддержания стабильной температуры в доме. На основе «облачной технологии» в нём реализован механизм передачи информации от подключенного оборудования и удалённое управление им через смартфон.

    TEPLOCOM CLOUD — тепло вашего дома всегда под контролем!

    Возможности теплоинформатора TEPLOCOM CLOUD:
    • Информирование об авариях и состоянии системы отопления. Управление котлом через смартфон из любой точки мира.
    • Постоянный контроль состояния газового котла, температуры на улице и в доме, температуры теплоносителя, возникновения протечки, наличие сети 220В. Существует возможность подключения контактных датчиков для дополнительного оповещения.
    • Управление температурой производится в зависимости от уличной температуры по технологии WeatControl, что минимизирует колебание температуры в доме в течение дня.
    • Индивидуальное расписание комфортной температуры на всю неделю.
    • Возможность размещения до 10 беспроводных датчиков температуры в радиусе 300 метров.
    • Снижение потребления газа до 30% и борьба с вредными выбросами в атмосферу благодаря сокращению образующегося углекислого газа.
    • Бесплатные приложения для работы с TEPLOCOM CLOUD на Android и iOS.
    • В комплект поставки входит: теплоинформатор, беспроводный радиодатчик температуры, датчик протечки, уличный датчик температуры, датчик температуры теплоносителя, GSM SIM карта, встроенная Li-ion батарея.

    Благодаря техннологии WaetControl управление системой отопления происходит с учётом изменений погоды на улице. Что минимизирует колебания температуры в доме в течение дня.

    Таким образом, мы видим, что существует большое количество приборов, которое обеспечивает работу тепловых систем с той или иной степенью комфорта и экономичности. Выбор лучшего из них, как всегда, остаётся за потребителем

    ТОП-7 лучших настольных токарных станков: какой купить, характеристики, отзывы

    Токарные станки применяют для механической обработки деталей из древесины, металла или пластмасс. Благодаря разнообразию функциональных решений аппараты получили большую популярность не только в небольших домашних мастерских, но и на крупном производстве. Они помогают с максимальной точностью обрабатывать изделия самой сложной формы и тратить минимум усилий. Как правильно подобрать настольный токарный станок вы узнаете в нашей статье.

    ТОП-7 лучших настольных токарных станков

    В наш рейтинг лучших настольных токарных станков вошли:

    • Proma DSO-1000;
    • Белмаш WL-300/450;
    • Энкор Корвет-73;
    • Калибр СТМН-550/350;
    • Кратон MML-01;
    • Jet BD-X7 50000900MX;
    • Зубр ЗСТД-350-1000 Мастер.

    Давайте рассмотрим подробнее каждое устройство.

    Proma DSO-1000

    Станок чешской фирмы, разработанный для работы с деревянными деталями размерами от 35 до 100 см. Устройство подключается к электросети 220 В, благодаря чему его удобно использовать в домашних условиях. Модель предусматривает четыре скоростных режима с максимальным значением вращения 1250 оборотов в минуту. За счет небольшого веса станок легко перемещать. Прибор хорошо подходит для обработки как мягких пород древесины, так и твердых. Функция копирования позволяет производить изделия по заданным параметрам. Крепление с помощью верстака дает возможность ставить станок практически на любой поверхности.

    Вес29 кг
    Максимальный диаметр350 мм
    Скорости4
    Назначениепо дереву
    Мощность400 Вт
    Размеры1450х250х370 мм
    Обороты850, 1250, 1750, 2510

    Средняя цена: 14200 рублей.

    Плюсы

    • справляется со сложными по геометрии контурами;
    • небольшой вес (29 кг);
    • многофункциональность.

    Минусы

    • сложно найти в магазинах.

    Станок приобрел для выполнения небольших деревянных заготовок. Модель имеет оптимальные параметры, ничего лишнего, но работу свою выполняет хорошо. Единственный недочет – быстро нагревается во время процесса. Поэтому рекомендую поставить вентилятор. Я его подсоединил от компьютера, стоящего рядом.

    Белмаш WL-300/450

    Модель отличается своей универсальностью. Она станет незаменимым помощником при обработке заготовок из дерева в небольших мастерских, а также крупном производстве. Питается аппарат от стандартной электрической сети. Конструкция изготовлена из качественного чугуна, а наличие специальной обработки предотвращает появление ржавчины. Скорость регулируется с помощью смены положения ремня на шкиве. Изменение высоты подручника позволяет выполнить индивидуальную настройку. Точность обработки обеспечивается надежной фиксацией заготовки во время действия станка. На корпусе находится кнопка включения, которая имеет защиту от случайного нажатия.

    Масса32 кг
    Максимальный размер обработки305 мм
    Скорости5
    Применениепо дереву
    Мощность550 Вт
    Габариты965×370×420 мм
    Обороты430, 750, 1150, 1800, 2800

    Стоимость: от 22500 до 24500 рублей.

    Плюсы

    • кнопки защищены колпачками от загрязнения опилками и стружками;
    • наличие места для хранения инструментов;
    • ножки имеют резиновые накладки, уменьшающие вибрацию.

    Минусы

    Поставил такую модель станка у себя на балконе. Корпус выглядит мощно, собран качественно, узлы надежные. При включении его почти не слышно. В целом, я очень доволен покупкой. Из недостатков могу назвать то, что при работе немного трясется крышка у ременного узла.

    Энкор Корвет-73

    Станок ориентирован на эксплуатацию в домашних мастерских или гараже. Он служит для шлифовки и обточки изделий из дерева длиной до 1 метра. Конструкция крепится на верстак с помощью болтов, которые обеспечивают высокую точность обработки. Четыре скоростных режима позволяют оптимально подобрать условия для работы с материалом разной твердости. Задняя часть детали надежно крепится рычагом, поэтому непрерывность процесса сохраняется.

    Вес27 кг
    Наибольший диаметр355 мм
    Число скоростей4
    Назначениепо дереву
    Мощность350 Вт
    Размеры1485х230х370 мм
    Обороты810, 1180, 1700, 2480

    Ценник: от 10600 до 12000 рублей.

    Плюсы

    • малое энергопотребление;
    • позволяет обрабатывать длинные детали (до 1000 мм);
    • легкий (27 кг).

    Минусы

    • не очень мощный двигатель (350 Вт).

    Идеальный вариант станка для новичка. Рекомендую всем, кто хочет попробовать себя в обработке дерева. Устройство очень крепкое, его сложно сломать. Однако работает не всегда точно, но в случае с большими деталями это будет незаметно. Двигатель мощный, в комплектации есть понятная инструкция. Во время смены скоростей приходится постоянно самостоятельно менять положение ремня и заново все настраивать.

    Калибр СТМН-550/350

    Основным отличием модели является его поставка в полностью собранном виде. Станок служит для обработки металла и изделий из пластмасс. Компактность и работа от обычной сети 220 В позволяют эксплуатировать прибор в домашних мастерских. Скорость вращения регулируется с помощью специального переключателя, находящегося на корпусе. На передней стенке конструкции располагаются световой индикатор наличия тока и предохранитель. Простота использования достигается благодаря информационным табличкам на боковой панеле. Устройство оснащено резцедержателями, позволяющими менять типы обработки. Производитель комплектует аппарат различными дополнительными приспособлениями. Счетное устройство помогает определить и настроить точную скорость вращения шпинделя. Модель предусматривает наличие защитного стекла от стружек и удобной кнопки отключения питания.

    Масса40 кг
    Max диаметр180 мм
    Область примененияпо металлу
    Мощность550 Вт
    Габариты815х368х385 мм
    Обороты0-2500

    Цена: от 60500 до 64800 рублей.

    Плюсы

    • надежность;
    • долговечность;
    • функция автоподачи.

    Минусы

    • не рассчитан на массовое производство.

    Считаю данную модель пригодной исключительно для домашней установки. Как к полноценному станку я к нему не отношусь, но для своих параметров он очень хорош! К нему нет возможности присоединить ЧПУ, а порой хочется поэкспериментировать. Я свой станок покупал с рук несколько лет назад. Сложные детали на нем не делаю, хотя говорят, что это вполне возможно, но муторно.

    Кратон MML-01

    Производитель разработал станок с учетом потребностей работы с металлическими деталями в бытовых условиях. Он отлично справляется с внешней и внутренней обработкой любой сложной формы. Максимальная длина изделий составляет 300 мм. Достоинством модели является простота использования и надежность. Станок имеет массивный корпус, уменьшающий вибрацию. Наличие функции нарезания позволяет увеличить возможности прибора. Безопасность от летящих стружек обеспечивается с помощью установленного прозрачного экрана. В комплектацию входят масленка, наборы ключей и запасных частей.

    Масса38 кг
    Диаметр180 мм
    Назначениепо металлу
    Мощность500 Вт
    Размеры695 х 310 х 305 мм
    Обороты50-2500

    Средняя стоимость: 56000 рублей.

    Плюсы

    • подходит для обработки пластмасс;
    • мощный двигатель;
    • устойчивый.

    Минусы

    • ориентирован на эксплуатацию дома.

    Отличное дополнение к большому и мощному станку, также он подойдет для любительской обработки заготовок. Машина отличная по своим функциональным возможностям. Приобрел ее недавно, пока не успел полностью попробовать все режимы. В комплекте есть (кроме стандартных инструментов) набор из 12 резцов. Хочу скорее опробовать их все.

    Jet BD-X7 50000900MX

    Прибор отлично обрабатывает изделия из металла любых кривых поверхностей. Конструкция из чугуна позволяет уменьшить вибрацию. Регулировка скорости вращения шпинделя осуществляется максимально плавно. Богатая комплектация увеличивает функциональность станка. Ножки конструкции имеют резиновые опоры, предотвращающие скольжение. Модель оснащена специальным поддоном, куда падает металлическая пыль. Защитное стекло служит препятствием к попаданию на оператора стружки.

    Вес55 кг
    Наибольший размер заготовки110 мм
    Назначениепо металлу
    Мощность750 Вт
    Габариты720 х 300 х 290 мм
    Обороты0-2500

    Цена: от 90000 до 94000 рублей.

    Плюсы

    • мало тратит электроэнергии;
    • мощный двигатель;
    • компактность.

    Минусы

    • не обнаружено.

    Считаю, что это один из лучших станков в своем ценовом сегменте. Недостатков не обнаружил, можете смело покупать данную модель. Точность изготовления деталей высокая, во время работы не шумит. Все крепления и узлы изготовлены качественно, претензий к сборке нет. Скорость настраивается быстро, будет понятно даже начинающему мастеру.

    Зубр ЗСТД-350-1000 Мастер

    Токарный станок ориентирован на обработку изделий из древесины длиной до одного метра. Прибор оснащен предохранительным электромагнитным выключателем, который срабатывает в случае отсутствия электричества. Четыре частоты вращения позволяют правильно настроить режим для работы с различными породами дерева. Благодаря увеличенной станине аппарат отлично справляется с крупными изделиями. Комфортность достигается с помощью удобного подручника широкой формы.

    Масса29 кг
    Диаметр350 мм
    Количество скоростей4
    Назначениепо дереву
    Мощность350 Вт
    Размеры1470х350х340 мм
    Обороты810-2480

    Средний ценник: 11500 рублей.

    Плюсы

    • экономичный двигатель;
    • простота использования;
    • надежность.

    Минусы

    • нагревается быстро.

    Купили подобный станок для школьных уроков труда. Прибор простой, внешнее оформление приятное. Минус – слабая станина, во время обработки дерева центр начинает смещаться и задевать заднюю бабку. Для меньшего нагревания мотора рядом поставил вентилятор.

    Сравнительная таблица характеристик

    Вам будет удобнее сравнить описанные модели, взглянув на общую таблицу с основными характеристиками.

    МодельНазначениеРазмерыВесОборотыМощностьMax диаметр
    Proma DSO-1000по дереву1450х250х370 мм29 кг850, 1250, 1750, 2510400 Вт350 мм
    Белмаш WL-300/450по дереву965х370х420 мм32 кг430, 750, 1150, 1800, 2800550 Вт305 мм
    Энкор Корвет-73по дереву1485х230х370 мм27 кг810, 1180, 1700, 2480350 Вт350 мм
    Калибр СТМН-550/350по металлу815х368х385 мм40 кг0-2500550 Вт180 мм
    Кратон MML-01по металлу695х310х305 мм38 кг50-2500500 Вт180 мм
    Jet BD-X7 50000900MXпо металлу720х300х290 мм55 кг0-2500750 Вт110 мм
    Зубр ЗСТД-350-1000 Мастерпо дереву1470х350х340 мм29 кг810-2480350 Вт350 мм

    Советы по выбору

    Перед покупкой настольного токарного станка рекомендуем ознакомиться со следующими пунктами:

    1. Назначение. Станки бывают для обработки деревянных заготовок или деталей из металла и пластмассы.
    2. Надежность. Направляющие станины должны иметь качественные крепления так, как они отвечают за устойчивость всей конструкции и снижают вибрацию при работе.
    3. Материал. Станина испытывает огромные нагрузки, поэтому она должна быть выполнена из чугуна.
    4. Напряжение сети. Если станок устанавливается дома, то убедитесь, что электропроводка выдержит его подключение.
    5. Скорости. На всех заявленных производителем скоростях аппарат должен работать без перебоев.
    6. Размеры заготовки. Каждая модель имеет максимальную длину и диаметр заготовки, которую возможно на ней обработать.

    Настольные токарные станки

    Частота вращения шпинделя: 60-900;110-1800;220-3600 об/мин

    Число скоростей: 3

    Расстояние между центрами: 450 мм

    Max диаметр обработки над станиной: 318 мм

    Мощность (Вт): 940

    Частота вращения шпинделя: 50-2500 об/мин

    Расстояние между центрами: 300 мм

    Max диаметр обработки над станиной: 180 мм

    Мощность (Вт): 600

    • Все шестерни металлические

    Частота вращения шпинделя: 50-2500 об/мин

    Число скоростей: 2

    Расстояние между центрами: 350 мм

    Max диаметр обработки над станиной: 180 мм

    Мощность (Вт): 550

    Частота вращения шпинделя: 800, 1180, 1700, 2500 об/мин

    Число скоростей: 4

    Расстояние между центрами: 1000 мм

    Max диаметр обработки над станиной: 350 мм

    Мощность (Вт): 350

    Частота вращения шпинделя: 810-2480 об/мин

    Число скоростей: 4

    Расстояние между центрами: 1000 мм

    Max диаметр обработки над станиной: 350 мм

    Мощность (Вт): 400

    Частота вращения шпинделя: 100-2000 об/мин

    Расстояние между центрами: 210 мм

    Max диаметр обработки над станиной: 140 мм

    Мощность (Вт): 150

    Частота вращения шпинделя: 400; 700; 1000; 1500; 2200; 3300 об/мин

    Число скоростей: 6

    Расстояние между центрами: 370 мм

    Max диаметр обработки над станиной: 250 мм

    Мощность (Вт): 500

    Частота вращения шпинделя: 810-2480 об/мин

    Число скоростей: 4

    Расстояние между центрами: 1000 мм

    Max диаметр обработки над станиной: 350 мм

    Мощность (Вт): 350

    Частота вращения шпинделя: 50-2500 об/мин

    Расстояние между центрами: 400 мм

    Max диаметр обработки над станиной: 210 мм

    Мощность (Вт): 600

    • Внимательно изучите комплект поставки

    Частота вращения шпинделя: 150-2500 об/мин

    Расстояние между центрами: 550 мм

    Max диаметр обработки над станиной: 250 мм

    Мощность (Вт): 750

    • Малое потребление электроэнергии

    Частота вращения шпинделя: 810;1180;1700;2480 об/мин

    Число скоростей: 4

    Расстояние между центрами: 1000 мм

    Max диаметр обработки над станиной: 350 мм

    Мощность (Вт): 350

    Число скоростей: 4

    Расстояние между центрами: 1000 мм

    Мощность (Вт): 450

    Частота вращения шпинделя: 40-1200/120-3200 об/мин

    Число скоростей: 2

    Расстояние между центрами: 1000 мм

    Max диаметр обработки над станиной: 418 мм

    Мощность (Вт): 2000

    Частота вращения шпинделя: 850/1250/1750/2150 об/мин

    Число скоростей: 4

    Расстояние между центрами: 1000 мм

    Max диаметр обработки над станиной: 340 мм

    Мощность (Вт): 400

    Частота вращения шпинделя: 450/1100/960/2400/1400/3500 об/мин

    Число скоростей: 3

    Расстояние между центрами: 455 мм

    Max диаметр обработки над станиной: 305 мм

    Мощность (Вт): 550

    Частота вращения шпинделя: 150-2000 об/мин

    Число скоростей: 6

    Расстояние между центрами: 800 мм

    Max диаметр обработки над станиной: 300 мм

    Мощность (Вт): 1100

    Порой мастеру легче самому выточить деталь, чем искать подходящую в магазинах или заказывать в интернете. Поэтому настольные токарные станки популярны сегодня в авторемонте, слесарных мастерских и частных производствах. Их легко купить, ведь на рынке представлен большой выбор по цене и техническим параметрам. Есть модели по дереву и металлу, а также универсальные.

    Преимущества оборудования

    • Занимает минимум места. В отличие от напольного, настольный токарный станок не имеет массивной станины. Все рабочие узлы компактно размещены на подставке. Можно найти модель весом до 50 кг и использовать ее для выездных работ.
    • Функциональность. Несмотря на небольшие габариты оборудование открывает перед мастером широкие возможности. Любой настольный токарный станок может нарезать резьбу, сверлить, шлифовать, вытачивать и торцевать детали. Благодаря нескольким скоростям можно подстраиваться под разные операции. Некоторые модели дополнительно оснащаются обратными кулачками для работы с деталями большого размера.
    • Надежная фиксация. Чтобы закрепить настольный токарный станок, его основание прикручивают к верстаку или столу. Рабочий процесс сопровождается минимальными вибрациями, и оборудование не смещается.

    Параметры выбора

    Мощность является основным показателем производительности. Модели со значением до 500 Вт подойдут для мелких токарных работ в гараже или учебной мастерской. Оборудование мощностью свыше 1000 Вт справится с работой на производстве или в автосервисе.

    В зависимости от того, какие по размеру детали вы будете обрабатывать, обратите внимание на следующие показатели. Расстояние между центрами определяет длину деталей, может быть от 250 до 1000 мм. Максимальный диаметр обработки над станиной показывает, какие по диаметру заготовки способен обрабатывать настольный токарный станок. Показатель может составлять от 180 до 400 мм и выше.

    Читайте также:  Подключение светодиодной ленты 220 В
    Оцените статью
    Добавить комментарий