Расчет времени работы от аккумулятора по мощности

Расчет времени автономной работы ИБП от аккумуляторов

При установке видеонаблюдения или аварийного освещения необходимо заранее рассчитать, на сколько хватит подключенного к системе аккумулятора. Время автономной работы в первую очередь зависит от емкости батареи. А вот зависимость от тока потребления приобретает обратно пропорциональный характер. Можно рассчитать, на сколько хватит аккумулятора, зная его емкость.

1) Простая формула

Т = E • U / P

  • Е — емкость аккумулятора в Ач
  • U — напряжение
  • P — мощность нагрузки в Вт.

Это сильно упрощенная формула, которая дает очень приблизительный результат при разрядах в диапазоне 5-15 часов. Подходит для того, чтобы быстро в уме прикинуть время автономии. Алгоритм не учитывает снижение энергоотдачи АКБ на коротких разрядах и увеличение на длинных, а также различные коэффициенты.

Существует усовершенствованная формула с коэффициентами:

Т = Uаб * Сак * К * h * Кр * Кg / Рнагр

  • Т – время автономной работы источника бесперебойного питания, ч;
  • Uаб – напряжение аккумуляторной батареи, В;
  • Сак емкость аккумуляторной батареи, Ач;
  • К – количество аккумуляторов в цепи;
  • h – КПД преобразователя (h=0,75-0,9), часто меняется от величины нагрузки;
  • Кр – коэффициент глубины разряда 0,8 –0,9 (80%-90%), следует считать 80%;
  • Кg – коэффициент доступной емкости (зависит от режима разряда и температуры, см. характеристики АКБ )
  • Рнагр – мощность нагрузки.

Этот алгоритм даёт относительно точные результаты, но для длительных разрядов от 1 часа и выше. На коротких разрядах результаты могут быть сильно искаженными из-за нелинейной функции разряда свинцово-кислотных АКБ. Похожий метод мы использовали в статье Расчет автономной работы потребителя от аккумуляторов.

Время разряда батареи в зависимости от тока нагрузки

В аккумуляторных источниках емкость указывается из расчёта того, сколько АКБ может выдавать тока в стандартный промежуток времени. В том случае, если в специфике источника это время не указано, то в основном берется 20 часов. Например, если на АКБ емкость указана как 200 А*ч, то это можно расшифровать как то, что батарея способна питать током 10А на протяжении 20 часов.

Интересно то, что подобный расчёт времени работы аккумулятора применим не для большой нагрузки. В случае батарей была замечена необычная закономерность. Она заключается в невозможности отдавать большой процент емкости при большей нагрузке. Таким образом, получается, что при увеличении тока нагрузки уменьшается процент отдачи емкости со стороны АКБ. Например, источник в 200 А*ч будет выдавать ток в 200А на протяжении 15-30 минут, но никак не полноценного часа.

Интересный факт! Емкость АКБ, который разряжен большой нагрузкой, никуда не девается, а остается в батарее. Например, если батарея в 100 А*ч разряжена на 50А, то при ее заряде она потребит где-то 50 А*ч. Но, если оставить ее на некоторое время, то емкость восстановится за счет диффузии ионов в электродах источника.

Такой эффект связан с тем, что ток в аккумуляторе протекает под воздействием ионной проводимости. Если в электролите проводимость на достаточно высоком уровне и при этом не несет особых значений, то перенос ионов в пластинах АКБ и преодоление переносчиками фазового раздела из электрода и электролита будет происходит медленно. Другими словами, если батарея будет быстро разряжаться, некоторые ионы просто не будут успевать выйти в электролит из электрода или преодолеть это расстояние в обратном порядке за время разряжения. Именно это и будет ограничивать емкость аккумулятора при быстром разряде.

Такая анормальность была давно замечена. И для расчёта времени разряда используют куда более емкие формулы, в которые внесены поправки на такой эффект.



2) Формула Пекерта

T=Cp/I^n

  • T – время в часах
  • Cp – емкость Пекерта (ёмкость АКБ при разряде током 1А)
  • I – ток разряда
  • n – экспонента Пекерта

Экспонента Пекерта иногда указывается в характеристиках АКБ, и рассчитывается она на основании данных C-рейтинга аккумулятора (емкость на разном времени разряда). Емкость Пекерта рассчитывается по формуле – Ср=R(C/R)^n (R – рейтинг в часах, соответствующий данной емкости, например, 10).

На базе этой формулы с учетом КПД инверторов и глубины разряда основаны наши калькуляторы. Они с высокой точностью рассчитывают время автономии как на коротких, так и на длинных разрядах.

Причины расчета емкости батарейки

Существует несколько оснований для такого расчета.

Знать емкость необходимо:

  • при замене АКБ,
  • починке неисправной батареи,
  • покупке и смене элементов аккумуляторов,
  • использовании старой комплектующей для установки на новый аппарат,
  • заимствовании запчастей для монтажа неработающей батарейки,
  • проверке соответствия всех установленных элементов.

Допустимы и другие причины определения емкости батареи. Избежать ошибок при подсчете поможет тщательное изучение нескольких методов. Есть стандартные и специальные способы. Выбор зависит не только от вашего желания и удобства.

Чтобы получить точный результат, потребуется провести тщательный анализ, но в дальнейшем это поможет быстро применять знания в любой ситуации и безошибочно определять емкость батареек.

3) Расчет по таблицам из спецификаций АКБ

Профессионально и точно можно рассчитать время автономии используя разрядные таблицы аккумуляторов. Опишем алгоритм по шагам:

Шаг 1. Расчет полной мощности в мощность нагрузки на аккумуляторы

Ракб= (Pнагр*cos(φ)*Кнагр)/КПДинв

  • Pнагр – мощность в кВа
  • cos(φ) – характеристика коэффициент мощности (характеристика нагрузки)
  • Кнагр – степень загрузки ИБП
  • КПДинв – коэффициент полезного действия инвертора

Для примера возьмем ИБП мощностью 120кВа работающий на нагрузке 70% с коэффициентом мощности 0.8:

Ракб= (120000*0,8*0,7)/0,94=71 489Вт — именно эта нагрузка ляжет на весь аккумуляторный банк при питании ИБП от АКБ.

Шаг 2. Расчет нагрузки на один аккумулятор

Пересчитаем нагрузку на один АКБ. Как правило, в крупных ИБП аккумуляторы соединяются последовательно кол-вом 32-40шт. Для расчета нагрузки на на одну батарею при 40АКБ:

71 489Вт/40=1 788Вт.

В дата-листе аккумуляторов как правило указывается мощность на элемент (Pэл), которых 6шт. в 12В АКБ. Следовательно:

Pэл = 1788/6 = 298Вт.

Шаг 3. Изучение разрядных таблиц батарей и подбор.

В статье Как правильно выбрать аккумулятор для ИБП мы рассматривали подвиды аккумуляторов в разрезе различного целевого использования. Одна из базовых характеристик – это энергоотдача, т.е. сколько способен отдать мощности АКБ за определенное время.

Давайте посмотрим разрядные таблицы 100Ач аккумуляторов Delta двух различных серий.

Delta DTM 12100 l:

Delta HRL 12100:

Напомним, что наша нагрузка на элемент 298Вт. Глубина разряда – 10,8В или 1,80В на элемент. Таким образом, из данных таблиц, можно сделать вывод, что DTM 12100 l продержит нагрузку около 13,8 минут (можно считать пропорционально, искажения минимальны), Delta HRL 12100 – 16,3 мин. разница порядка 15%. Кстати, разница в цене приблизительно аналогична.

Как повысить автономность, используя различные режимы работы ИБП

Автономная схема работы ИБП — один из основных режимов эксплуатации при отключении центрального электроснабжения. Но при определенных условиях емкости батарей недостаточно для обеспечения всех потребителей, а возможность подключения дополнительных АКБ отсутствует. Тогда приходится прибегать к следующим способам:

  • Работа ИБП от генераторов. Учитывайте то, что большинство бесперебойников чувствительны к скачкам напряжения, погрешности по частоте. А такие проблемы характерны для многих генераторов. Поэтому необходимо тщательно подходить к совместимости определенных марок оборудования.
  • Параллельная работа ИБП так же допускается только при синхронизации параметров выходного напряжения. Достичь этого очень сложно. Поэтому рекомендуется не включать несколько устройств в параллельную работу, а распределить нагрузку и использовать для каждой группы отдельный ИБП.

Рассчитать ориентировочный период работоспособности устройства поможет онлайн калькулятор времени работы ИБП. Но более правильным будет воспользоваться помощью специалиста. Звоните или закажите обратный звонок прямо сейчас. Поможем бесплатно.

Для защиты какого оборудования вы покупаете ИБП?

Какой выбрать бесперебойник – также зависит от особенностей конструкции подключаемой техники.

Общее правило таково: к ИБП с правильной синусоидой на выходе можно подключать практически любую технику, требуется лишь правильно рассчитать мощность. К остальным UPS, особенно оффлайн типа, можно подключать далеко не все оборудование.

ИБП с двойным преобразованием (онлайн).

Подробнее о правильной синусоиде здесь.

В некоторых устройствах, например, лазерных принтерах, ксероксах также могут присутствовать компоненты, которым для работы требуется синусоидальная форма напряжения, и при работе от ИБП с прямоугольной или ступенчатой формой сигнала они прослужат гораздо меньше.

Кроме того, встречались случаи, когда реактивная нагрузка повреждала не рассчитанный на нее ИБП.

Однако многие производители, как и в случае индуктивной нагрузки, чаще всего не советуют подключать трансформаторные БП к обычным ИБП.

Как отличить трансформаторный блок питания от обычного импульсного? Если мы говорим о внешнем БП, то импульсный – обычно легкий и небольшой, а трансформаторный – тяжелее и больше, за счет того, что внутри него размещен, собственно, трансформатор. Тип встроенного блока питания определить сложнее, здесь нужно ориентироваться на документацию производителя.

Хорошая новость – в большинстве случаев в электронной технике, такой как модемы, коммутаторы, роутеры, компьютеры сейчас используются именно импульсные БП.

Все это может не только искажать работу техники, но и сокращать срок ее работы.

Расчёт ИБП по мощности и времени работы. Расчёт АКБ для ИБП

Каждый владелец частного дома, офиса или предприятия, где есть оборудование со строгими требованиями к электроснабжению и риск прекращения подачи электропитания, рано или поздно осознает, что без ИБП ему просто не обойтись. Подбор ИБП всегда индивидуальный процесс, так как у каждого пользователя свои конкретные требования.

В нашей статье мы постарались сделать простое и понятное руководство для всех, кто самостоятельно подбирает ИБП и аккумуляторные батареи для решения своих задач.

Содержание

  • Особенности подбора ИБП
  • Подбор ИБП по мощности и времени автономной работы
  • 1. Определение суммарной мощности потребителей
  • 2. Выбор типа конструктива ИБП
  • 3. Определение требуемого времени автономной работы ИБП
  • Расчёт аккумуляторных батарей для ИБП
  • 1. Посчитайте количество АБ
  • 2. Выясните отдаваемую мощность каждой ячейки батареи
  • 3. Подберите подходящую модель аккумуляторной батареи
  • 4. Подберите вариант установки АБ
  • Пример подбора аккумуляторных батарей для автономного питания газового котла

    Особенности подбора ИБП

    По сравнению со стабилизаторами напряжения, источники питания являются более сложными устройствами в техническом плане, из-за этого расчет ИБП, то есть подбор необходимой модели, будет включать несколько больше параметров, в частности, помимо мощности устройства, потребуется определить емкость аккумуляторных батарей (АБ), зависящую от требований ко времени автономии.

    При неверном подборе данных технических характеристик ИБП, общая эффективность его работы, а также обеспечиваемый уровень бесперебойности вряд ли будут приемлемыми. Ниже приведены методики расчета этих параметров.

    Подбор ИБП по мощности и времени автономной работы

    Алгоритм подбора модели ИБП состоит из описанных ниже этапов.

    1. Определение суммарной мощности потребителей

    Для начала необходимо определить, какие электроприборы вы будете напитывать от ИБП и какая у них потребляемая мощность. При этом важно не забыть о величине пусковых токов нагрузки. Их значение может в несколько раз отличаться от номинального.

    Информацию о величине потребляемой мощности и пусковых токах можно узнать в техпаспорте изделия или у производителя электроприбора. Определив максимальную суммарную мощность нагрузки в Вт, необходимо подобрать ИБП по активной выходной мощности, которая должна быть больше рассчитанного значения примерно на 20-30%.

    2. Выбор типа конструктива ИБП

    Как правило, модели ИБП могут иметь следующие форм-факторы:

    • настенный;
    • напольный;
    • рэковый – для размещения в 19-дюймовые стойки;
    • универсальный – могут устанавливаться как напольно, та и в стойку.

    Выбор типа конструктива зависит от того, где вам необходимо разместить устройство, чтобы обеспечить надежное подключение ИБП к сети и нагрузке.

    3. Определение требуемого времени автономной работы ИБП

    Чтобы определить необходимое время автономного питания нагрузки от ИБП, необходимо учесть длительность и периодичность отключений электроэнергии в сети и наличие устройств резервного питания. Существует два варианта ситуаций:

    • в вашей электросети случаются незначительные по времени отключения электроэнергии или для питания нагрузки в период отсутствия электричества вы используете генератор. В этом случае вам стоит искать решение с небольшим временем автотомии – не более 5-10 минут.
    • в вашей электросети случаются отключения электричества на более длительное время и при этом в качестве источника резервного питания вы не используете генератор. В этом случае вам потребуется ИБП с большим временем автотомии (точное значение зависит от максимального периода пропадания электричества).

    В зависимости от типа ситуации, потребуется выбрать один их двух вариантов ИБП:

    • если требуемое время автономной работы ИБП не более 5-10 минут, то вам подойдут модели ИБП со встроенными АБ, которые обеспечат бесперебойный переход на работу от генератора или будут надежно защищать от коротких пропаданий сетевого напряжения. Такие устройства в желаемом типе конструктива легко самостоятельно подобрать на сайте продавца или производителя, зная максимальную потребляемую мощность нагрузки.
    • если требуемое время автономной работы более 10 минут, то стоит рассмотреть модели ИБП без встроенных АБ, но с возможностью подключения внешних батарей. Такие устройства более сложны в подборе, поэтому для решения этой задачи вы можете обратиться к консультантам производителя или продавца. Если же вы хотите самостоятельно подобрать внешние батареи, то ниже мы приводим простой алгоритм подбора.

    Расчёт аккумуляторных батарей для ИБП

    В данном разделе мы приведём простой алгоритм подбора стандартных 12-вольтовых батарей типа AGM (Absorbent Glass Mat).

    1. Посчитайте количество АБ

    Для начала нужно посчитать количество батарей, которое потребуется для работы выбранной модели ИБП. В этом поможет следующая формула:
    N батарей = Номинальное напряжение АБ / 12 Вольт, где 12 Вольт – это номинальное напряжение одной батареи.

    Номинальное напряжение АБ указывается в Вольтах, это значение можно найти в технических характеристиках модели ИБП.

    2. Выясните отдаваемую мощность каждой ячейки батареи

    Далее необходимо выяснить мощность, которую должна отдать батарея при пересчете на 2-вольтовую ячейку. Как правило, именно это значением большинство производителей аккумуляторных батарей указывают в разрядных таблицах подбора батарей.

    Читайте также:  Беседки садовые своими руками - особенности строительства

    Поясним, что стандартная 12-вольтовая свинцово-кислотная аккумуляторная батарея ИБП представляет собой корпус, в котором находится 6 соединенных последовательно ячеек, каждая из которых имеет номинальное напряжение 2 В.

    Чтобы правильно рассчитать мощность, которую должна отдать батарея при пересчете на 2-вольтовую ячейку, необходимо воспользоваться следующей формулой:
    P ячейки = P нагрузки / N ячеек х КПД инвертора, где:

    • P ячейки – мощность, которую должна отдать одна 2-вольтовая ячейка батареи;
    • P нагрузки – потребляемая мощность нагрузки в Вт;
    • N ячеек – общее количество ячеек в батареях выбранной модели ИБП (чтобы выяснить значение этого параметра, необходимо номинальное напряжение АБ разделить на 2 В или количество АБ умножить на 6 ячеек);
    • КПД инвертора при работе от батарей необходимо узнать у производителя ИБП (например, в моделях однофазных источников питания ГК «Штиль» это значение равно 0,86).

    3. Подберите подходящую модель аккумуляторной батареи

    Когда мощность ячейки батареи выяснена, перед тем как переходить на сайт производителя АБ и подбирать подходящую модель понадобиться уточнить еще один параметр – конечную точку разряда ячейки батареи (В/эл-т), то есть значение напряжения, ниже которого нельзя разряжать батарею. Это устанавливаемая величина, которая не может быть ниже 1,6 Вольт на каждую 2-вольтовую ячейку батареи, и зависит от длительности разряда.

    Теперь, зная три основных параметра (время автономной работы, значение отдаваемой мощности ячейки батареи и конечную точку ее разряда), определяется подходящая модель аккумуляторной батареи. Для этого необходимо использовать таблицы разряда постоянной мощностью батареи при 25 градусах Цельсия (это предельно допустимая температура для ее эффективной эксплуатации). Такие таблицы, как правило, указаны на сайте производителя на странице модели батареи.

    Важно отметить, что подбирать батареи всегда необходимо с большей мощностью, чем это требуется.

    4. Подберите вариант установки АБ

    После подбора подходящих внешних батарей необходимо определить способ их установки. У каждого производителя существует множество вариантов установки АБ в зависимости от конструктивного исполнения самого источника питания.

    Как правило, батареи размещаются в специальных устройствах, которые обладают необходимой системой защиты. Например, в ГК «Штиль» для размещения батарей предусмотрены следующие варианты:

    • батарейные модули настенного, напольного или стоечного исполнения (размещенные в таких модулях батареи, как правило, обеспечивают от 10 мин до 3 ч автономной работы ИБП);
    • сборно-разборные батарейные стеллажи (предназначены для размещения батарей, обеспечивающих длительное время автономии – до 20 ч и более);
    • телекоммуникационные шкафы, куда обычно устанавливают фронт-терминальные батареи.

    Пользователь может обойтись и без специального устройства для установки батарей, но в этом случае ему все равно нужно будет самостоятельно организовать их защиту.

    Пример подбора аккумуляторных батарей для автономного питания газового котла

    Необходимо обеспечить бесперебойное питание газового котла и циркуляционного насоса, установленных в частном доме.

    • максимальная потребляемая мощность нагрузки составляет 600 Вт (P нагрузки = 600 Вт);
    • требуется 3 часа автономной работы электроприборов (Т автономии = 3 часа);
    • предполагается разместить ИБП на стене рядом с газовым котлом.

    В качестве ИБП для решения нашей задачи выберем настенную модель «Штиль» SW1000L с выходной мощностью 900 Вт, без встроенных батарей, но с поддержкой подключения внешних.

    Расчет внешних аккумуляторных батарей для ИБП SW1000L будет происходить в следующей последовательности:

    1) Рассчитаем необходимое количество внешних АБ (у данной модели номинальное напряжение внешних АБ составляет 36 В):
    N батарей = 36 В / 12 В. Таким образом, расчет показал, что потребуется 3 аккумуляторные батареи.

    2) Выясним отдаваемую мощность каждой ячейки батареи (у данной модели КПД инвертора при работе от батарей составляет 86%):
    P ячейки = 600 / 18 х 0,86. Необходимая мощность ячейки аккумуляторной батареи составляет 38,7 Вт.

    3) Подберём необходимую модель АБ, зная все необходимые параметры:

    • время автономной работы – 3 часа;
    • конечная точка разряда ячейки батареи – 1,75 В/эл-т;
    • мощность каждой ячейки батареи – 38,7 Вт.

    В качестве примера воспользуемся моделями аккумуляторных батарей компании Энергон. Зайдем на сайт производителя и выберем необходимую батарею. Из всего ассортимента изделий нам подойдет серия Delta DTM L, которая используется для питания требовательных электрических приборов – насосов и котлов систем отопления.

    Для нашего случая батарея Delta DTM 1290 L с отдаваемой мощностью ячейки 44.2 Вт является оптимальным вариантом.

    4) Определим, куда будем устанавливать батареи. Для размещения выбранных батарей потребуется напольный батарейный стеллаж, например, стеллаж BS-01 от производителя «Штиль», который позволяет установить как раз до трех батарей емкостью 90 Ач.

    В итоге для обеспечения бесперебойного питания газового котла и циркуляционного насоса с суммарной потребляемой мощностью 600 Вт мы подобрали:

    • ИБП SW1000L с выходной мощностью 900 Вт;
    • три аккумуляторных батареи Delta DTM 1290 L 90 Ач;
    • батарейный стеллаж BS-01.

    Ознакомиться с полным модельным рядом настенных ИБП «Штиль» для котлов можно, перейдя по ссылке:
    Настенные источники бесперебойного питания «Штиль» для котлов. Модельный ряд.

    Расчет времени автономной работы ИБП от аккумуляторов

    Как профессионально и точно рассчитать время автономной работы бесперебойника или других потребителей от аккумуляторных батарей?

    Точный расчет времени автономной работы от аккумулятора при помощи математических выкладок занятие нетривиальное. В связи с этим, мы упростили задачу, реализовав алгоритм расчета в калькуляторах:

    Однако давайте рассмотрим подходы к определению времени автономной работы.

    1) Простая формула

    Т = E • U / P

    • Е – емкость аккумулятора в Ач
    • U – напряжение
    • P – мощность нагрузки в Вт.

    Это сильно упрощенная формула, которая дает очень приблизительный результат при разрядах в диапазоне 5-15 часов. Подходит для того, чтобы быстро в уме прикинуть время автономии. Алгоритм не учитывает снижение энергоотдачи АКБ на коротких разрядах и увеличение на длинных, а также различные коэффициенты.

    Существует усовершенствованная формула с коэффициентами:

    Т = Uаб * Сак * К * h * Кр * Кg / Рнагр

    • Т – время автономной работы источника бесперебойного питания, ч;
    • Uаб – напряжение аккумуляторной батареи, В;
    • Сак емкость аккумуляторной батареи, Ач;
    • К – количество аккумуляторов в цепи;
    • h – КПД преобразователя (h=0,75-0,9), часто меняется от величины нагрузки;
    • Кр – коэффициент глубины разряда 0,8 –0,9 (80%-90%), следует считать 80%;
    • Кg – коэффициент доступной емкости (зависит от режима разряда и температуры, см. характеристики АКБ )
    • Рнагр – мощность нагрузки.

    Этот алгоритм даёт относительно точные результаты, но для длительных разрядов от 1 часа и выше. На коротких разрядах результаты могут быть сильно искаженными из-за нелинейной функции разряда свинцово-кислотных АКБ. Похожий метод мы использовали в статье Расчет автономной работы потребителя от аккумуляторов.

    2) Формула Пекерта

    T=Cp/I^ n

    • T – время в часах
    • Cp – емкость Пекерта (ёмкость АКБ при разряде током 1А)
    • I – ток разряда
    • n – экспонента Пекерта

    Экспонента Пекерта иногда указывается в характеристиках АКБ, и рассчитывается она на основании данных C-рейтинга аккумулятора (емкость на разном времени разряда). Емкость Пекерта рассчитывается по формуле – Ср=R(C/R)^n (R – рейтинг в часах, соответствующий данной емкости, например, 10).

    На базе этой формулы с учетом КПД инверторов и глубины разряда основаны наши калькуляторы. Они с высокой точностью рассчитывают время автономии как на коротких, так и на длинных разрядах.

    3) Расчет по таблицам из спецификаций АКБ

    Профессионально и точно можно рассчитать время автономии используя разрядные таблицы аккумуляторов. Опишем алгоритм по шагам:

    Шаг 1. Расчет полной мощности в мощность нагрузки на аккумуляторы

    Ракб= (Pнагр*cos(φ)*Кнагр)/КПДинв

    • Pнагр – мощность в кВа
    • cos(φ) – характеристика коэффициент мощности (характеристика нагрузки)
    • Кнагр – степень загрузки ИБП
    • КПДинв – коэффициент полезного действия инвертора

    Для примера возьмем ИБП мощностью 120кВа работающий на нагрузке 70% с коэффициентом мощности 0.8:

    Ракб= (120000*0,8*0,7)/0,94=71 489Вт – именно эта нагрузка ляжет на весь аккумуляторный банк при питании ИБП от АКБ.

    Шаг 2. Расчет нагрузки на один аккумулятор

    Пересчитаем нагрузку на один АКБ. Как правило, в крупных ИБП аккумуляторы соединяются последовательно кол-вом 32-40шт. Для расчета нагрузки на на одну батарею при 40АКБ:

    71 489Вт/40=1 788Вт.

    В дата-листе аккумуляторов как правило указывается мощность на элемент (Pэл), которых 6шт. в 12В АКБ. Следовательно:

    Pэл = 1788/6 = 298Вт.

    Шаг 3. Изучение разрядных таблиц батарей и подбор.

    В статье Как правильно выбрать аккумулятор для ИБП мы рассматривали подвиды аккумуляторов в разрезе различного целевого использования. Одна из базовых характеристик – это энергоотдача, т.е. сколько способен отдать мощности АКБ за определенное время.

    Давайте посмотрим разрядные таблицы 100Ач аккумуляторов Delta двух различных серий.

    Delta DTM 12100 l:

    Delta HRL 12100:

    Напомним, что наша нагрузка на элемент 298Вт. Глубина разряда – 10,8В или 1,80В на элемент. Таким образом, из данных таблиц, можно сделать вывод, что DTM 12100 l продержит нагрузку около 13,8 минут (можно считать пропорционально, искажения минимальны), Delta HRL 12100 – 16,3 мин. разница порядка 15%. Кстати, разница в цене приблизительно аналогична.

    4) Проведение реальных разрядов

    Конечно, идеальным является проведение реальных разрядных тестов. Необходимо учитывать, что аккумуляторы набирают максимальную емкость к 10-му циклу заряда-разряда.

    На сколько времени хватает аккумулятора: практические расчеты

    При установке видеонаблюдения или аварийного освещения необходимо заранее рассчитать, на сколько хватит подключенного к системе аккумулятора. Время автономной работы в первую очередь зависит от емкости батареи. А вот зависимость от тока потребления приобретает обратно пропорциональный характер. Можно рассчитать, на сколько хватит аккумулятора, зная его емкость.

    1. Время разряда батареи в зависимости от тока нагрузки
    2. Методы расчета времени работы
    3. Экспонента Пекерта
    4. Простая формула
    5. Расчет по таблицам из спецификаций АКБ
    6. Вычисление полной мощности аккумулятора, от потребляемой мощности нагрузки на АКБ
    7. Расчеты нагрузки только на один АКБ
    8. Просмотр и изучение разрядных таблиц аккумуляторов и последующий подбор подходящего элемента
    9. Проведение реальных разрядов
    10. Заключение

    Время разряда батареи в зависимости от тока нагрузки

    В аккумуляторных источниках емкость указывается из расчёта того, сколько АКБ может выдавать тока в стандартный промежуток времени. В том случае, если в специфике источника это время не указано, то в основном берется 20 часов. Например, если на АКБ емкость указана как 200 А*ч, то это можно расшифровать как то, что батарея способна питать током 10А на протяжении 20 часов.

    Интересно то, что подобный расчёт времени работы аккумулятора применим не для большой нагрузки. В случае батарей была замечена необычная закономерность. Она заключается в невозможности отдавать большой процент емкости при большей нагрузке. Таким образом, получается, что при увеличении тока нагрузки уменьшается процент отдачи емкости со стороны АКБ. Например, источник в 200 А*ч будет выдавать ток в 200А на протяжении 15-30 минут, но никак не полноценного часа.

    Интересный факт! Емкость АКБ, который разряжен большой нагрузкой, никуда не девается, а остается в батарее. Например, если батарея в 100 А*ч разряжена на 50А, то при ее заряде она потребит где-то 50 А*ч. Но, если оставить ее на некоторое время, то емкость восстановится за счет диффузии ионов в электродах источника.

    Такой эффект связан с тем, что ток в аккумуляторе протекает под воздействием ионной проводимости. Если в электролите проводимость на достаточно высоком уровне и при этом не несет особых значений, то перенос ионов в пластинах АКБ и преодоление переносчиками фазового раздела из электрода и электролита будет происходит медленно. Другими словами, если батарея будет быстро разряжаться, некоторые ионы просто не будут успевать выйти в электролит из электрода или преодолеть это расстояние в обратном порядке за время разряжения. Именно это и будет ограничивать емкость аккумулятора при быстром разряде.

    Такая анормальность была давно замечена. И для расчёта времени разряда используют куда более емкие формулы, в которые внесены поправки на такой эффект.

    Методы расчета времени работы

    Экспонента Пекерта

    Для того, чтобы рассчитать время работы АКБ, стоит воспользоваться формулой Пекерта:

    В формуле используются следующие обозначения величин:

    1. Т – временной промежуток, ч.
    2. С – коэффициент, вычисленный Пекертом, который обозначает емкость батареи при разряжении током величиной в 1А.
    3. I – ток, при котором совершается разряд.
    4. N – Экспонента Пекерта.

    Экспонента в некоторых случаях сразу же указывается в документации или характеристиках аккумулятора. Она рассчитывается на основе данных с-рейтинга АКБ, т.е. емкости в разных временных промежутках разряда. Коэффициент Пекерта можно рассчитать самостоятельно по формуле:

    Здесь R обозначает часовой рейтинг присущий емкости.

    Формула Пекерта помогает максимально точно рассчитать время работы автономного источника питания.

    Простая формула

    Чтобы рассчитать, насколько хватит аккумулятора, можно использовать следующую формулу:

    В ней используются следующие обозначения:

    1. Е – емкость используемого АКБ, А*ч.
    2. U – напряжение.
    3. Р – мощность нагрузки, Ватт.

    Данная формула сильно упрощена. Ее можно использовать, чтобы быстро рассчитать примерное время (5-15 часов разряда) того, сколько будет работать источник. В этом уравнении нет поправок на снижение отдачи энергии батареи во время короткого разряда и увеличение этого же показателя на длительных периодах. Также здесь не учтены коэффициенты, которые позволяют дать максимально точные данные.

    В случае с простым способом расчёта есть и более совершенная формула:

    В ней используются такие обозначения, как:

    1. Т – время, на протяжении которого может работать источник питания, ч.
    2. U – Напряжение АКБ, Ватт.
    3. С – емкость аккумулятора, А*ч.
    4. К – количество используемых батарей для питания.
    5. H – Коэффициент полезного действия, применимый к преобразователю. Его показатели равняются 0.75-0.9, и довольно часто изменяются, так как показатель зависит от нагрузки.
    6. К1 – коэффициент задающий глубину разряда источника 0.8-0.9. Рекомендуется использовать меньшее значение (т.е. 80%).
    7. К2 – показатель доступной емкости.
    8. Р – мощность от нагрузки.

    Такая формула позволяет посчитать более точное время работы автономного источника питания, но для более длительных разрядов от 60 минут. На непродолжительном разряде полученные данные будут сильно разниться с реальными показателями из-за наличия нелинейной функции разрядов в кислотно-свинцовых батареях.

    Читайте также:  Раватерм или пеноплекс: что лучше

    Расчет по таблицам из спецификаций АКБ

    Способ расчета времени работы аккумулятора по таблицам из спецификаций батарей позволяет получить точные результаты. Этот метод выяснения времени, сколько может работать АКБ делится на три этапа.

    Вычисление полной мощности аккумулятора, от потребляемой мощности нагрузки на АКБ

    В формуле применяются такие обозначения, как:

    • Р1 – мощность, кВт;
    • Соs(φ) – характеристика на коэффициент мощности;
    • К – степень прилагаемой нагрузки ИБП;
    • КПД инвертора.

    Например, если взять ИБП мощностью в 120 кВт, который работает при нагрузке в 70%. А коэффициент мощности в 0.8, то получится следующий расчёт:

    Именно такая нагрузка и пойдёт на ИБП при питании источника устройства от аккумулятора.

    Расчеты нагрузки только на один АКБ

    На этом этапе важно перерассчитать нагрузку именно на одну батарею. Потому что обычно в больших источниках бесперебойного питания используются несколько батарей, соединенных последовательно. Количество АКБ может варьироваться до 40 штук.

    Формула для вычисления нагрузки на одну батарею при условии, что в цепочке 40 штук выглядит так:

    Достаточно просто разделить предыдущий результат на количество элементов в цепи. Также в дата-листах АКБ указывают мощность только на один элемент, которых, как правило, 6 штук в 12В батареях. Из этого следует, что нагрузка примет такое значение:

    Где Рэл – это мощность одного элемента.

    Просмотр и изучение разрядных таблиц аккумуляторов и последующий подбор подходящего элемента

    Базовой характеристикой каждой батареи считается ее энергоподача. Этот показатель указывает на количество выдаваемой мощности АКБ в определенный временной промежуток. В характеристических таблицах ориентиры идут на глубину разряда. Таблицы выглядят следующим образом:

    Для примера были взяты две таблицы аккумулятора Дельта из двух серий. В ходе вычисления была выявлена нагрузка в 298Вт. По таблицам видно, что первый источник выдержит нагрузку почти 14 минут, а второй — 16. Очевидно, что выбор лучше делать на второй аккумулятор.

    Проведение реальных разрядов

    Самые точные показатели дает проверка проведением реальных разрядов. Но эта процедура очень длительная. Также не стоит забывать, что АКБ приобретает максимальную ёмкость только на 10 цикле заряд-разряд.

    Заключение

    Узнать насколько хватает аккумулятора для питания той или иной техники достаточно просто. Формулы весьма легкие. Также существуют специальные калькуляторы, в которые достаточно вбить все необходимые данные.

    Расчет времени работы ИБП для определенной нагрузки

    • Принцип работы
    • Что влияет на время автономной работы
    • Как подобрать ИБП
    • Формула
    • Где купить
    • Заключение
    • Видео по теме

    Чтобы обеспечить бесперебойную работу различных устройств, приборов и систем, используют источники бесперебойного питания. Рынок этими устройствами пестрит, поэтому выбор может быть довольно непростым решением. Чтобы не переплачивать, рекомендуют провести расчет времени работы ИБП в зависимости от нагрузки, которая будет ложиться на их плечи при отключении питания главного фидера.

    Принцип работы

    Источник бесперебойного питания — это устройство, которое контролирует параметры выходного напряжения вашей сети. В качестве основного источника электроэнергии используется городская сеть. В качестве резервного — аккумуляторные батареи.

    Согласно стандарту международной электротехнической комиссии все ИБП подразделяются на три основных типа:

    • Пассивные (резервные);
    • Линейно интерактивные;
    • С двойным преобразованием.

    Принцип работы ИПБ резервного типа (еще называют оффлайн) — при напряжении сети, не выходящем за заданные пределы данное устройство, передает напряжение от электросети к нагрузке, не внося в него никаких изменений. Если напряжение выходит за заданные пределы, он отключает подачу напряжения от сети и переключается на подачу напряжения от аккумуляторных батарей. При этом, преобразуя постоянное напряжение, АКБ в переменное напряжение промышленной частоты.

    Плюсы этого типа простой в монтаже, простой в работе, достаточно дешевый.

    Минусы: частое переключение на подачу питания от АКБ расходует их ресурс.

    Принцип работы ИБП линейно-интерактивного типа отличим от офлайновых только тем, что в их работе задействован стабилизатор напряжения. Диапазон предельно допустимого напряжения этих ИБП шире. То есть при падении напряжения в более широких пределах, стабилизатор сперва выравнивает напряжение, а если этого недостаточно, то ИБП переключается на электроснабжение от аккумуляторных батарей. При этом скорость переключения линейно интерактивных бесперебойников составляет 4.7 мс. Этого времени достаточно для продолжения работы компьютера. А вот для систем более чувствительных к перепадам (серверное и медицинское оборудование) лучше применять другой тип оснащения.

    Принцип работы ИБП с двойным преобразованием (еще называют онлайн) – напряжение от сети поступает на ИБП, преобразуется на постоянное напряжение для зарядки АКБ. Затем это постоянное напряжение преобразуется в переменное и передается в нагрузку.

    Плюсы этого типа:

    1. На выходе вы получаете чистый синус, потому как напряжение на выходе инвертора, это уже не то, которое поступило на вход инвертора.
    2. Нулевое время переключения при полном пропадании питания от электросети. Это достигается за счет того, что в нагрузку и в любом случае поступает преобразованное напряжение.

    Минусы: дорогостоящее оборудование и дорогой монтаж.

    Что влияет на время автономной работы

    Много разных показателей влияет на время независимой от сети работы. Главным считаются параметры устройства и перспективы добавления емкости батарей. Благодаря этому ИБП любого типа можно поделить на подтипы как устройства:

    1. С внедренными АКБ, без возможности подсоединения доп. аккумуляторов.
    2. С вмонтированными внутрь АКБ и с возможностью подсоединения доп. АКБ.
    3. Без встроенных АКБ, а только с подсоединением доп. батарей.
    4. Без встроенных АКБ, но с перспективой добавления АКБ с подключением из вне.

    Бесперебойники со встроенными аккумуляторами в основном используются для кратковременного обеспечения электроэнергией нагрузки, чтобы корректно завершить работу (например, для компьютера).

    Время работы ИБП с дополнительно подключенными АКБ работают дольше и в целом их время работы полностью зависит от:

    • ёмкости этих аккумуляторов и степени износа;
    • мощности нагрузки;
    • силы тока зарядника ИБП, что влияет на выбор ёмкости АКБ.

    Как подобрать ИБП

    Выбирать источник бесперебойного питания, в общем случае нужно исходя из:

    • максимальной мощности общей нагрузки;
    • коэффициента спроса нагрузки (реальной мощности потребления), влияющей на расчет АКБ (указывается в Вт или %);
    • указаний в паспорте ИБП кВт и кВА;
    • если параметр кВт по какой-либо причине не указывается, то принять кВт=кВА.

    Таким образом, мощность всей нагрузки — это мощность, указанная на шильдиках блоков питания. Нагрузка в определенный момент может потребить всю эту мощность (обычно такое не происходит, но пик возможен), поэтому покрытие должно быть реализовано полностью.

    Подбор батарей делается исходя из:

    1. Реальной мощности потребления (обычно значительно меньше максимальной мощности блоков питания). Некоторые производители оборудования заявляют ее. Если же нет, подбирается опытным путем.
    2. Ёмкости штатных батарей, но можно выбрать ИБП с дополнительными аккумуляторными батареями.

    Данные по времени зарядки ИБП с дополнительным массивом батарей обычно недоступны. В худшем случае +1 дополнительный блок времени заряда для внутренних АКБ.

    Формула

    Чтобы не ходить вокруг да около, существует универсальная формула, позволяющая осуществить расчет времени работы ИБП с питанием от АКБ:

    T [час] = C [А×час] ×V [В] × η / P [Вт], где:

    • C — суммарная емкость АКБ ИБП в Ач (есть в паспорте);
    • V — напряжение одного аккумулятора в В (есть в паспорте);
    • η — КПД инвертора ИБП (в расчёте примеров используется КПД = 0.92Б который указывается в ТТХ ИБП);
    • P — средняя мощность подключенной к ИБП установки в Вт.

    КПД инвертора и напряжение одного аккумулятора — это известные значения. Нужно определить суммарную емкость и среднюю мощность.

    • Uач — емкость аккумуляторной батареи;
    • Kin — количество встроенных АКБ в ИБП;
    • Kout — количество внешних АКБ, подключенных единым блоком к ИБП, с теми же характеристиками ёмкости.

    Средняя мощность рассчитывается исходя из потребленной энергии за определённый период. Обычно, она указывается производителем устройства, но если это комплекс, то лучше провести расчеты самостоятельно. Вот несколько примеров:

    1. Мощность блока питания 750 Вт, а реальное потребление 250 Вт (ЦП — 80 Вт, Видеокарта — 150 Вт, HDD — 10 Вт, материнка + остальное 10 Вт).
    2. Заявленная мощность компрессора 180 Вт, но он активируется каждые 8 мин с периодом работы 3 мин. В таком случае средняя мощность равна 180/8×3=67.5 Вт.
    3. При заявленной годовой потребляемой мощности производителем в кВт/ч, для расчета нужно ее делить на 12. Например, указано 370 кВт×час за год. P=370×1000/365/24=42.23 Вт.

    После определения всех параметров можно подставлять значения. Например, ИБП оснащен 2 батареями по 7 Ач и напряжением 12 В. К бесперебойнику подсоединен внешний блок на 8 батарей с аналогичной емкостью. С=7×(2+8)=70 Ач.

    Расчет автономной работы ИБП для данного бесперебойника, который подключен к компьютеру с нагрузкой в 250 Вт:

    T [час] = 70 Ач × 12 В × 0.92/ 250 [Вт] = 3.0912 = 3 часа 5 минут 28 секунд.

    Получается, что расчетный ИБП с АКБ может заменить городскую сеть электропитания при реальной нагрузке компьютера 250 Вт чуть более чем на 3 часа.

    В реальности, такой мощности компьютеру не нужно. Чтобы завершить все процессы и выключится, ему максимум понадобится 5 минут.

    Где купить

    Приобрести ИБП можно как в специализированном магазине, так и онлайн в Интернет-магазине. Во втором случае, особого внимания заслуживает бюджетный вариант приобретения изделий на сайте Алиэкспресс. Для некоторых товаров есть вариант отгрузки со склада в РФ, их можно получить максимально быстро, для этого при заказе выберите «Доставка из Российской Федерации»:

    Заключение

    Расчет автономной работы ИБП нужно проводить для того, чтобы «не переплатить» или не купить «маломощный» аппарат, который в критически важный момент не выполнит свою основную задачу — переключение потребителя на резервный фидер питания. Чтобы высчитать, достаточно посмотреть информацию о бесперебойнике в паспорте, узнать потребляемую мощность устройством и подставить значение в формулу.

    Видео по теме

    Проектирование воздушного отопления: основные принципы и пример расчета

    Монтаж системы воздушного отопления невозможен без предварительной подготовки проекта. Разработанный план должен быть достоверным и содержать максимально правдивые сведения. Получить их самостоятельно практически невозможно, без специализированного инженерного образования. Поэтому, наша компания предлагает воспользоваться своими услугами по проектированию систем воздушных отоплений. Мы поможем создать схему размещения оборудования воздушного отопления в комплексе с услугами по его монтажу и запуску в эксплуатацию, либо отдельно от них.

    Расчет теплопотерь дома

    Процесс проектирования воздушного отопления предусматривает учет выбранного типа оборудования. Определиться с его разновидностью можно узнав количество воздуха, необходимое для работы системы, а также начальную температуру воздуха для обогрева помещения. Определиться с перечисленными показателями поможет расчет теплопотерь.

    В холодное время года, теплый воздух покидает помещение через окна, двери, крышу и стены. Чтобы обеспечить комфортную температуру внутри дома, необходимо вычислить тепловую мощность, позволяющую компенсировать потери тепла и поддержать оптимальную температуру в помещении.

    Потери тепла рассчитываются индивидуально для каждого частного дома. Расчеты можно провести вручную или прибегнув к помощи специальной программы.

    Для расчета потерь тепла дома (Q), необходимо тепловые затраты ограждающих конструкций (Qogr.k), расходы на вентиляцию и инфильтрацию (Qv) с учетом бытовых расходов (Qt). Вычисленные потери измеряются в Вт.

    С целью вычисления затрат используем следующую формулу:

    Q = Qogr.k + Qv — Qt

    Определение размера теплопотерь отдельных источников рассмотрим чуть ниже.

    Пример расчета теплопотерь дома

    Поскольку общие тепловые потери загородного дома складываются из потери тепла окон, дверей, стен, потолка и прочих элементов здания, его формула представляется как сумма данных показателей. Принцип расчета выглядит следующим образом:

    Qorg.k = Qpol + Qst + Qokn + Qpt + Qdv

    Определить тепловые потери каждого элемента можно учитывая особенности его строения, теплопроводность и коэффициент сопротивления тепла, указанный в паспорте конкретного материала.

    Расчет теплопотерь дома сложно рассматривать исключительно на формулах, поэтому мы предлагаем воспользоваться наглядным примером.

    Предположим, что дом для которого необходимо провести расчеты расположен в Перми. Температура воздуха в наиболее холодную пятидневку составляет — 38°С, температура грунта — +2°С, желаемая температура внутри помещения — +22°С.

    Габариты дома составляют:

    1. Ширина – 7 м;
    2. Длина – 9 м;
    3. Высота – 2,8 м.

    Исходя из указанных данных, можно приступить к расчетам.

    Вычисление тепловых потерь стен

    В расчет тепловой потери стен берется каждый слой ограждающего элемента. К примеру, стена может быть утеплена слоем пенополистирола или минеральной ваты. В таком случае, их показатели рассчитываются по отдельности.

    Тепловые потери каждого слоя можно рассчитать по следующей формуле:

    Qst = S × (tv – tn) × B × l/k

    S – площадь слоя, выраженная в квадратных метрах.

    tv – температура, которую владелец дома планирует поддерживать внутри помещения. Единица ее измерения – градусы. Стандартно, берется значение на несколько раз больше желаемого.

    tn – средняя температура за 5 дней. В расчет берется самые холодные дни, свойственные для региона. Показатель измеряется в градусах.

    к – коэффициент теплопроводности материала.

    В – толщина ограждающего слоя. Единица измерения – метры.

    l – параметр из таблицы, учитывающей особенности тепловых затрат.

    Стены рассматриваемого на примере здания состоят из газобетона, толщиной В = 0,25 м. Его коэффициент (к) составляет 2,87.

    Qst = 22,21 × (22 + 38) × 0,25 × 1,1/2,87 = 877 Вт

    В случае, когда в стене имеются двери или окна, их площадь отнимается от первичных показателей, а теплопотери рассчитываются отдельно.

    Теплопотери через окна и двери

    Расчет тепловой потери дверей происходит по формуле:

    Qdv = Qd × j × H

    Qd – теплосопротивление двери.

    j – высота здания.

    H – коэффициент, который берется из таблицы. Его величина зависит от типа дверей и их месторасположения.

    Для расчета теплопотерь окон используется следующая формула:

    Qokn = S × dT / R

    S – площадь окон в доме.

    dT – табличный коэффициент.

    R – тепловое сопротивление окна.

    Читайте также:  Жидкие обои: преимущества и недостатки + пошаговая инструкция

    При определении теплопотери окон важно учитывать материал ее изготовления.

    В нашем здании, установлена одна входная дверь и семь металлопластиковых окна.

    Qdv = 2,3 × 2,81 × 1,05 = 6,79 Вт

    Qokn = 12 × 0,6/0,44 = 16,36 Вт

    Суммарная теплопотеря окон и дверей составит 23 Вт

    Расчет теплопотерь потолка и пола

    Потери тепла через пол и потолок можно рассчитать, используя следующую формулу:

    Qpt/p = kpt/p × Fpt/p(tv — tn)

    kpt/p – коэффициент передачи тепла.

    Fpt/p – площадь потолка/пола.

    Расшифровка остальных показатель приведена выше в других формулах.

    Общая площадь пола и потолка составляет 51,52 м. Коэффициент передачи тепла равен 1.

    Qpt/p = 1 × 51,52(22+38) = 3151 Вт

    Вычисление теплопотерь вентиляции

    Вентиляционная система также является источником потери тепла. Через нее холодный воздух попадает в помещение. Общая формула расчета потерь тепла выглядит следующим образом:

    Qv = 0.28 × Ln × pv × c × (tv – tn)

    Ln – расход воздуха, поступающего из вентиляционной системы (м3/ч).

    pv – плотность воздуха (кг/м3).

    c – теплоемкость воздуха (кДж/(кг*oC)).

    tv – температура в доме (С°).

    tn – средняя температура в зимний период времени в регионе (С°).

    Показатель Ln берется из технических характеристик вентиляционной системы.

    В помещении работает вентиляция с расходом воздуха 3 м3/ч. Показатель Pv равен 1,2. Теплоемкость воздуха составляет 1,005 кДж/(кг*°C)).

    Ln = 3 × 51.52 = 154.56

    Qv = 0,28 × 154,56 × 1,2 × 1,005 × (22+38) = 3132 Вт

    Таким образом, теплопотери через вентиляционную систему составляют 3132 Вт.

    Бытовые тепловые поступления

    При расчетах бытовых потерь не стоит забывать о том, что от бытовых приборов исходит небольшое тепло. Оно должно учитывать в расчетах.

    Опытным путем было доказано, что подобное тепло выделяется не более 10 Вт на 1 м2. Исходя из этого можно составить формулу:

    Qt = 10 × Spol

    Spol – общая площадь пола.

    Для нашего примера бытовые тепловые поступления составят 515 Вт.

    Подводя итоги, необходимо рассчитать общие теплопотери дома.

    Qorg.k = 877 + 23 + 3151 + 3132 – 515 = 6668 Вт

    В качестве рабочего значения можно взять 7000 Вт или 7 кВт. Отметим, что приведенные данные в примере, могут не соответствовать параметрам конкретного дома. Мы приводим их для облегчения самостоятельного расчета.

    Основная методика расчета СВО (система воздушного отопления)

    Принцип работы СВО заключается в передаче тепла холодному воздуху за счет контактирования с теплоносителем. При этом, основными элементами системы является тепловой генератор и теплопровод.

    В помещение воздух подается уже нагретым до определенной температуры (tr) с целью поддержания желаемой температуры (tv). Именно поэтому количество выделяемой энергии должно приравниваться к общим теплопотерям (Q). В данном случае имеет место следующее равенство:

    Q = Eot × c × (tr – tv)

    С – теплоемкость воздуха, равная 1,005 Дж/(кг*К)

    E – расход теплого воздуха для отопления помещения.

    Примеры расчетов для СВО

    Если СВО используется в качестве вентиляционной системы. При расчетах следует учитывать количество воздуха для вентиляции и отопления. С этой целю выбирают рециркуляционную (РСВО) систему или с частичной циркуляцией (ЧРСВО).

    Определение количества воздуха для РСВО

    Количество воздуха для РСВО (Eot) определяется как:

    Eot = Q/(c × (tr-tv))

    По данной формуле определяется исключительно количество теплого воздуха, подаваемого в рециркуляционных системах.

    Eot = 7000/(1,005 × (22+38)) = 116

    Расчет количества воздуха для ЧРСВО

    Для ЧРСВО количество воздуха определяется по формуле:

    Erec = Eot × (tr – tn) + Event × pv × (tr – tv)

    Eot – количество смешанного воздуха до желаемой температуры

    Event – расход воздуха на вентиляцию

    Для нашего примера расход воздуха на вентиляцию составит 110 м3/ч

    Erec = 116 × (22+38) + 110 × 1.2 × (22+38) = 14880

    Определение начальной температуры воздуха

    Определение начальной температуры воздуха можно рассчитать по формуле:

    tr = tv + Q/c × Event

    Обозначение каждого показателя приведено в вышеуказанных формулах.

    tr = 22 + 7/1,005 × 110 = 26

    Из вышеизложенного следует, что при движении воздуха теряется порядка 4 градусов тепла.

    Преимущества заказа проектирования системы воздушного отопления в компании

    Проектирование воздушного отопления – сложная задача для неопытного пользователя. Она требует выяснения ряда факторов, самостоятельное определение которых затруднено.

    Проектирование воздушных отоплений стоит доверить квалифицированной компании по следующим причинам:

    • достоверность каждого показателя;
    • выполнение правильных расчетов;
    • составление оптимальной схемы расположения системы;
    • учет конфигурации и особенностей помещений.

    Узнать стоимость проектирования системы воздушного отопления можно позвонив в офис нашей компании по номеру +7 (495) 255-53-39. Для удобства наших клиентов, мы работаем круглосуточно.

    Расчет эффективности воздушного отопления

    Монтаж системы отопления невозможен без осуществления предварительных вычислений. Полученные сведения должны быть максимально точными, поэтому расчет воздушного отопления производят эксперты с использованием профильных программ, учитывая нюансы конструкции.

    Рассчитать систему воздушного отопления (далее – СВО) можно самостоятельно, обладая элементарными познаниями в математике и физике.

    В этом материале мы расскажем, как рассчитать уровень теплопотерь дома и СВО. Для того чтобы все было максимально понятно будут приведены конкретные примеры вычислений.

    Несложный расчет воздушной отопительной системы, совмещенной с приточной вентиляцией

    Тут, само собой разумеется, очень многое зависит от метода организации циркуляции воздуха. В случае если, к примеру, употребляется лишь частичная рециркуляция, то это разрешит мало сэкономить на электричестве, поскольку нагревательному прибору не нужно будет тратить энергию на подогрев воздуха с температурой, равной уличной.

    Иначе, вариант с частичной рециркуляцией не всегда приемлем чисто с гигиенической точки зрения, поскольку часть загрязненного воздуха все равно останется в помещении. Но нулевая рециркуляция, особенно зимой, обойдется обладателям недешево, но воздушное пространство будет гарантированно будет чистым.

    Расчет воздушного отопления совмещенного с вентиляцией выполняется исходя из того, что в помещении обязана поддерживаться заданная температура окружающей среды. От этого не должен мучиться приток, другими словами кратность замены воздуха в комнате должна быть кроме этого величиной постоянной.

    В качестве примера приведен очень упрощенный вариант расчета, но он подойдет, к примеру, для частного строительства.

    Целый расчет возможно поделить на 3 несложных этапа:

    1. Необходимо выяснить теплопотери в помещении. Для упрощения расчета нужно воспользоваться онлайн-калькулятором, это разрешит учесть тонкости наподобие типа стеклопакета, установленного в квартире, климатической территории и т. д. При ручном расчете многие новички испытывают проблемы с этим,

    Обратите внимание! От правильности исполнения этого пункта будет зависеть свойство отопительного прибора поддерживать нужную температуру в квартире. В случае если, к примеру, итог окажется заниженным, то нагреватель просто не справится и о комфорте возможно будет забыть.

    1. После этого необходимо задаться температурой, которая обязана поддерживаться в помещении и температурой выхода (на выходе из отопительного прибора) и выяснить расход воздуха при заданных условиях. Расчет ведется по формуле

    в данной формуле приняты такие обозначения:

    • Qп – потери тепла, подсчитаны на прошлом этапе, Вт,
    • с – теплоемкость воздуха, Дж/(кг•К), справочная величина, принимается равной 1005,
    • tг и tв – температура из отопительного прибора и температура в комнате, ?С.
    1. Определяется расход тепла, которое нужно будет затратить на подогрев этого воздуха, употребляется формула

    где tн – наружная температура окружающей среды, ?С.

    Пример расчета

    Как пример выполним несложный расчет в котором стоит задача выполнить расчет отопления и вентиляции, при условии их совместной работы.

    Приняты такие данные:

    • в комнате установлены двойные стеклопакеты, а площадь остекления в процентном соотношении образовывает 20% от площади стенки,
    • принята наружная температура -30?С,
    • в комнате лишь одна стенки выходит наружу,
    • площадь помещения – 20 м2,
    • в доме обязана неизменно поддерживать температура на уровне +20 ?С, температура подачи +50 ?С,

    Расчет делаем по рекомендованной методике:

    • потери тепла для для того чтобы случая составят 2,26 кВт,
    • расход воздуха для для того чтобы случая должен составлять G = 2260/(1005(50-20)) = 0,075 кг/с,
    • тепла на подогрев пригодится Qн = 0,075•1005•(20-(-30)) = 3769 Вт = 3,77 кВт. Уже опираясь на эти сведенья возможно подбирать отопительный прибор по паспортным чертям.

    Второй этап

    2.Зная теплопотери, рассчитаем расход воздуха в системе используя формулу

    G- массовый расход воздуха, кг/с

    Qп- теплопотери помещения, Дж/с

    C- теплоемкость воздуха, принимается 1,005 кДж/кгК

    tг- температура нагретого воздуха (приток), К

    tв – температура воздуха в помещении, К

    Напоминаем что К= 273+°С, то есть чтоб перевести ваши градусы Цельсия в градусы Кельвина нужно к ним добавить 273. А чтоб перевести кг/с в кг/ч нужно кг/с умножить на 3600.

    Перед расчетом расхода воздуха необходимо узнать нормы воздухообмена для для данного типа здания. Максимальная температура приточного воздуха 60°С, но если воздух подается на высоте меньше 3 м от пола эта температура снижается до 45°С.

    Еще одно, при проектировании системы воздушного отопления возможно использование некоторых средств энергосбережения, таких как рекуперация или рециркуляция. При расчете количества воздуха системы с такими условиями нужно уметь пользоваться id диаграммой влажного воздуха.

    Имеет ли суть совмещать отопительную и вентиляционную системы?

    Большая часть людей у нас привыкли к классическому водяному отоплению, а вопрос совмещения вентиляции и отопления кроме того не рассматривают действительно, а напрасно. Так как проектирование системы вентиляции и отопления как единого целого разрешит максимально использовать возможности воздуховодов, они не будут простаивать в холодной время года.

    К тому же, воздушная система отопления имеет ряд преимуществ перед классической, где в качестве теплоносителя употребляется вода.

    Применение воздуха в качестве теплоносителя разрешает:

    • продолжить срок работы системы (долговечность воздушной отопительной системы достигает до 40 лет),
    • сократить время прогрева помещения,

    Обратите внимание! В случае с водяной системой необходимо дождаться пока радиатор даст достаточное количество тепла, это занимает часы. Воздушная система поставляет в комнату уже подогретый воздушное пространство, необходимо лишь подождать пока он смешается с холодным воздухом. На это уйдет всего лишь 20 – 30 мин..

    Второй этап

    2.Зная теплопотери, рассчитаем расход воздуха в системе используя формулу

    G- массовый расход воздуха, кг/с

    Qп- теплопотери помещения, Дж/с

    C- теплоемкость воздуха, принимается 1,005 кДж/кгК

    tг- температура нагретого воздуха (приток), К

    tв – температура воздуха в помещении, К

    Напоминаем что К= 273+°С, то есть чтоб перевести ваши градусы Цельсия в градусы Кельвина нужно к ним добавить 273. А чтоб перевести кг/с в кг/ч нужно кг/с умножить на 3600.

    Перед расчетом расхода воздуха необходимо узнать нормы воздухообмена для для данного типа здания. Максимальная температура приточного воздуха 60°С, но если воздух подается на высоте меньше 3 м от пола эта температура снижается до 45°С.

    Еще одно, при проектировании системы воздушного отопления возможно использование некоторых средств энергосбережения, таких как рекуперация или рециркуляция. При расчете количества воздуха системы с такими условиями нужно уметь пользоваться id диаграммой влажного воздуха.

    Приточная вентиляция совмещенная с воздушным отоплением

    Принцип воздушного отопления на основе приточной установки основана на рециркуляции воздуха, установка забирает воздух из помещения, добавляет необходимое количество свежего воздуха, очищает, нагревает и вновь подает в помещение. Для распределения воздуха по помещениям прокладывается сеть воздуховодов, заканчивающихся воздухораспределительными решетками, диффузорами или анемостатами. Основной сложностью таких систем, по мнению специалистов нашего проектного института по отоплению в Украине является балансировка таких систем, чем больше помещений, тем тяжелее увязать их между собой. Для этого необходима дорогостоящая автоматика, поэтому такие системы более эффективны именно в промышленном и производственном секторах, в больших магазинах и других помещениях с большим объемом.

    Проектирование систем воздушного отопления на основе приточных установок

    Проектирование систем отопления, в том числе и воздушных, начинается теплотехнического расчета, которым определяется требуемое количество тепла для каждого производственного или бытового помещения. После расчетов требуемого тепла, задаемся температурой подачи, зависящей от:

    • Высоты помещения – чем больше высота помещения, тем ниже температура подачи, чтоб струя воздуха достигала пола.
    • Материалов воздуховодов и распределительных решеток – пластиковые решетки имеют свойство деформироваться в даже от не сильно большой температуры, которая действует продолжительное время.
    • Назначения помещения – в помещениях с постоянным нахождением людей вблизи воздухораспределителей необходимо снижать температуру подачи иначе будет возникать дискомфорт.

    Схемы воздушных отопительных систем

    В зависимости от того, где расположен источник тепла, возможные схемы воздушных отопительных систем делятся на два типа:

    • Центральная система
    • Местная система.

    Местная схема отопления

    Когда площадь действия системы отопления распространяется всего на одно помещение, в котором находится сам тепловой центр, схема называется местной схемой воздушного отопления производственных помещений. Расчет и выбор схемы производятся в зависимости от специфики производственного объекта, учета ряда эксплуатационных требований.

    Центральная схема отопления

    Другое название этой схемы — канальная. Смысл ее заключается в том, что воздух нагревается до нужной температуры в тепловом центре, а затем подается в помещения через воздуховоды. Тепловую установку можно разместить как внутри здания, так и снаружи.

    Системы отопления, построенные по центральному типу, в свою очередь бывают рециркуляционными, прямоточными, частично-рециркуляционными.

    Рециркуляционная система. Требует сравнительно небольших начальных расходов, эксплуатационные расходы тоже невелики.

    Применяется в помещениях, где разрешается циркуляция воздуха.

    Система с частичной рециркуляцией. Является более гибкой системой, реализуется за счет механических побуждений движения воздуха. Она способна работать в разных режимах: с частичной заменой воздуха или полной. Может работать в сочетании с вентиляционными установками.

    Прямоточная система. Применение такой системы актуально для помещений, в которых выделяются взрывоопасные вещества, токсичные или пожароопасные — в тех случаях, когда попадание этих веществ в другие помещения недопустимо.

  • Оцените статью
    Добавить комментарий