Основания и фундаменты: типы и взаимодействие

Основания и фундаменты

При строительстве мостов на устройство фундаментов затрачивают до 40% времени и труда и до 30% финансовых средств, а в сложных инженерно-геологических условиях эти показатели еще выше.

Повышение экономической эффективности фундаментостроения должно осуществляться в неразрывной связи с повышением качества работ, которое во многом предопределяет надежность и долговечность любых сооружений в целом. Особое внимание требуется уделять доброкачественному проектированию и выполнению подземных работ, поскольку из-за отсутствия надежных методов контроля за состоянием оснований и фундаментов в период эксплуатации сооружений не всегда удается своевременно принять необходимые меры по устранению последствий случайных дефектов. Такие дефекты, возникшие в результате допущенных ошибок при проектировании и не замеченные в период возведения фундаментов, в дальнейшем, спустя некоторое время, начинают проявляться в виде разного рода деформаций сооружений, затрудняющих или исключающих нормальную их эксплуатацию. Устранение дефектов, как правило, требует затрат, значительно превышающих первоначальные, а для мостов, кроме того, и длительных перерывов или ограничений движения обращающихся нагрузок.

Чтобы проектировать и строить фундаменты не только экономично, но, главное, надежно, необходимо ясно представлять, как передаются на грунты нагрузки от сооружений, особенности поведения грунтов под действием на них сжимающих, выдергивающих и сдвигающих нагрузок, как изменяются свойства разных грунтов при действии на них воды, какие фундаменты и в каких грунтах следует применять, какими способами их возводить. Ответы на перечисленные и многие другие вопросы можно получить в результате изучения предмета «Основания и фундаменты».

Для изучения предмета «Основания и фундаменты» необходимо знать основы инженерной геологии, механики грунтов и гидрогеологии. Инженерная геология изучает и оценивает влияние геологических факторов на работу проектируемых зданий и сооружений, а также возможные изменения этих факторов в результате нарушения природных условий при возведении и эксплуатации зданий и сооружений. Механика фунтов занимается изучением напряженно-деформированного состояния и физико-механических свойств грунтов оснований, разработкой методов расчета прочности и деформаций оснований, способов определения давления грунтов на ограждающие конструкции. Гидрогеология изучает подземные воды, содержащиеся в толще грунтов.

Основанием называют часть массива грунтов, непосредственно воспринимающую нагрузку и вследствие этого подверженную деформациям под ее воздействием. Основание из грунтов природного сложения называют естественным. Основание из предварительно уплотненных или укрепленных тем или иным способом грунтов называют искусственным.

Устройство песчаного и щебеночного основания под фундамент

Применение песчаной подушки обеспечивает оптимальное воздействие нагрузки на ни нижнюю часть фундамента, противодействует его подмыванию грунтовыми водами. Если грунт в вырытом котловане неприемлем для возведения спроектированного фундамента, поверхностный слой убирается, засыпается песок толщиной не менее 0,2-0,25 м. Подушка тщательно разравнивается.

Схема армирования подушки фундамента.

Чтобы основание фундамента не было зыбким, подушку следует тщательно утрамбовать с помощью виброплиты. В процессе трамбования песок периодически поливается водой для обеспечения максимальной плотности слоя.

При устройстве основания необходимо учитывать активность и уровень грунтовых вод на участке в весенний период. Если строительство ведется в местности, где вода близко подступает к поверхности почвы, под песчаной подушкой обустраивается дренажный слой.

Основание с песчаной подушкой подготавливается в основном при глубоком залегании от поверхности земли грунтовых вод. Метод используется при сооружении одноэтажных домов из легких материалов (пенополистирольных блоков, каркасных строений и т. д).

Для ленточного фундамента толщина песчаного слоя должна быть примерно в 3 раза больше его ширины. Для увеличения срока эксплуатации подушки из песка и предотвращения ее заиливания перед засыпкой в котлован укладывается полотно геотекстиля. Лучше выполняет свои функции подушка трапецеидальной формы с сужением граней вниз под углом в 30?. Ширина и длина основания должна быть больше размеров фундамента на 0,15-0,2 м.

При устройстве щебеночного основания предварительно засыпается слой песка 0,05-0,1 м и поливается водой. Затем укладывается щебень слоем в 20-25 см. Подсыпка производится до проектного уровня с постепенной трамбовкой виброплитой. Щебень используется фракции 20-40 мм. Основание фундамента с подушкой из щебня обустраивается при строительстве частных домов и котеджей из разнообразных строительных материалов и любой этажности.

Чаще всего фундамент закладывается ниже глубины промерзания почвы в регионе строительства для предотвращения вспучивания основания. Величина заглубления зависит от:

Предельные состояния оснований фундаментов, принципы их проектирования

Основания рассчитываются по двум группам предельных состояний: первая – по несущей способности, вторая – по деформациям.

К первой группе предельных состояний оснований относятся деформации неустановившейся ползучести, чрезмерные пластические деформации, резонансные колебания, потеря устойчивости формы и положения, вязкое или хрупкое разрушение.

Ко второй группе предельных состояний относятся такие состояния оснований, при которых затрудняется нормальная эксплуатация здания или сооружения или снижается его долговечность в результате недопустимых осадок, прогибов углов поворота, а также колебаний, трещин и т. д.

Следует иметь в виду, что потеря несущей способности основания приводит чаще всего конструкции здания или сооружения в предельное состояние первой группы. В этом случае предельные состояния основания и конструкций здания или сооружения совпадают. Что касается деформаций основания, то они могут привести конструкции здания или сооружения в предельные состояния как второй, так и первой групп. В связи с этим предельные деформации основания могут ограничиваться прочностью, устойчивостью и трещиностойкостью, а также требованиями архитектурного, эксплуатационно-бытового и технологического характера.

Расчет основания по деформациям производится с соблюдением следующих условий (исходя из совместной работы основания и сооружения):

где S – абсолютные значения осадки отдельных фундаментов, определяемые расчетом, исходя из наиболее неблагоприятных грунтовых условий; Ṡ – средняя осадка фундаментов, рассчитываемая как среднее значение абсолютных осадок отдельных фундаментов:

где s1, s2, . , sn – абсолютные осадки отдельных фундаментов или лент; A1, A2 . An – суммарные площади подошвы фундаментов с одинаковыми размерами, аналогичными грунтовыми условиями оснований и близкими по влиянию загружения соседними фундаментами; Su и Ṡu – предельные значения соответственно абсолютных и средних осадок, устанавливаемых СНиП 2.02.01-83.

Расчет оснований только по условию (1.1) является недостаточным. Основным расчетом оснований зданий и сооружений по деформациям является проверка по относительной неравномерности осадки:

где (Δs/L) и i – соответственно относительная неравномерность осадок и крен, определяемые расчетом; (Δs/L)u и iu – предельные (соответственно) относительная неравномерность осадок и крен, рекомендуемые СНиП 2.02.01-83.

По второй группе предельных состояний (по деформациям) основания рассчитываются во всех случаях, по первой группе – в следующих случаях:

  1. основание подвержено действию значительных горизонтальных нагрузок (подпорные стены, фундаменты распорных конструкций и т. д.) с учетом сейсмических;
  2. здание или сооружение расположено на откосе или в непосредственной близости от него;
  3. основание сложено скальными грунтами.

Если основание сложено медленно уплотняющимися пылевато-глинистыми грунтами со степенью влажности Sг≥0,85 и коэффициентом консолидации сν≤107 см2/год, силу предельного сопротивления основания следует определять с учетом возможного нестабилизированного состояния основания в результате избыточного порового давления в грунте и. В этом случае соотношение нормальных и касательных напряжений определяется следующей зависимостью:

где ϕ1 и c1 – угол внутреннего трения и удельное сцепление грунта в стабилизированном состоянии.

Избыточное поровое давление можно определять методами фильтрационной консолидации грунтов, при этом обязательно учитывается скорость приложения нагрузки на основание. В случае возведения зданий и сооружений высокими темпами, отсутствия в основании дренирующих слоев грунта или дренирующих устройств и т. д., при соответствующем обосновании допускается в запас надежности принимать избыточное поровое давление, равное нормальному напряжению по площадкам скольжения (u=σ), или использовать в расчетах угол внутреннего трения ϕ1 и удельное сцепление c1 для нестабилизированного состояния грунтов основания. Для водонасыщенных глинистых грунтов с показателем текучести JL≤0,5 можно не учитывать возможности возникновения нестабилизированного состояния грунта и не определять коэффициент консолидации.

При проектировании оснований и фундаментов необходимо учитывать взаимодействие здания или сооружения со сжимаемым основанием. Состояние основания можно считать предельным в том случае, если оно приводит к одному из предельных состояний здания или сооружения.

Расчет деформации основания производится с использованием расчетной схемы в виде линейно деформируемого полупространства с ограничением глубины активной (сжимаемой) зоны или линейно деформируемого слоя. Анизотропию прочностных и деформационных характеристик, а также развитие деформаций во времени рекомендуется учитывать при расчете оснований из водонасыщенных пылевато-глинистых грунтов и илов.

При расчете конструкций зданий и сооружений на сжимаемом основании могут применяться также расчетные схемы с использованием коэффициентов постели или коэффициентов жесткости, представляющих собой отношение удельного давления на грунт основания к его расчетной осадке. Такие расчетные схемы приемлемы в случае необходимости учета неоднородности грунтов, слагающих основание, а также при расчете зданий и сооружений на подрабатываемых территориях и т.д.

Читайте также:  Обогреватель на балкон: как обогреть лоджию зимой, инфракрасный обогрев и конвектор, как отопить воздухом квартиры

Нелинейность деформирования грунтов рекомендуется учитывать при расчете пространственно-жестких зданий и сооружений во взаимодействии со сжимаемым основанием, допуская при этом использование упрощенных методов с заменой фундаментов нелинейно деформируемыми опорами.

Проектирование оснований осуи1,ествляется по следующим основным принципам:

  1. Проектирование оснований зданий и сооружений по предельным состояниям независимо от типа фундамента.
  2. Учет совместной работы системы – основание, фундамент и надземные несущие конструкции здания или сооружения.
  3. Комплексный подход при выборе типа фундамента и оценке работы грунтов основания на основе совместного рассмотрения: инженерно-геологических условий территорий строительной площадки; чувствительности несущих конструкций здания или сооружения к неравномерным деформациям основания; методов производства строительно-монтажных работ по устройству оснований фундаментов и особенностей эксплуатации зданий и сооружений.

Перечисленные факторы свидетельствуют о сложности выполнения задачи по проектированию оснований и фундаментов. Поэтому зачастую невозможно определить рациональные типы оснований и фундаментов, не рассмотрев предварительно несколько возможных, конкурирующих вариантов. Окончательное решение следует принимать на основе технико-экономического сравнения рассматриваемых вариантов оснований и фундаментов. При этом необходимо учитывать стоимость конструкции фундамента, ее долговечность, индустриальность изготовления, трудоемкость, возможность выполнения строительно-монтажных работ в зимнее время. Особое внимание обращается на сохранение естественной структуры грунтов основания во время производства земляных работ.

Вариантное проектирование оснований и фундаментов рекомендуется выполнять в такой последовательности:

  1. Наметить возможные, конкурирующие варианты оснований и фундаментов с учетом инженерно-геологических условий строительной площадки, конструктивных особенностей здания или сооружения и действующих нагрузок.
  2. Рассчитать выбранные варианты оснований и фундаментов в стадии технического проекта, отобрав наиболее нагруженные фундаменты.
  3. Произвести технико-экономическое сравнение вариантов и выбрать из них наиболее рациональный.

>> Modules Anywhere >>> –>

Нелинейность деформирования грунтов рекомендуется учитывать при расчете пространственно-жестких зданий и сооружений во взаимодействии со сжимаемым основанием, допуская при этом использование упрощенных методов с заменой фундаментов нелинейно деформируемыми опорами.

ОСНОВАНИЯ И ФУНДАМЕНТЫ

Насыпные – образовавшиеся искусственно при засыпке оврагов, прудов, мест свалки и т.п. Обладают свойством неравномерной сжимаемости, и в большинстве случаев их нельзя использовать в качестве естественных оснований под здания. В практике встречаются также намывные грунты, образовавшиеся в результате очистки рек и озер. Эти грунты называют рефулированными насыпными грунтами. Они являются хорошим основанием для зданий.

Устройство песчаного и щебеночного основания под фундамент

Применение песчаной подушки обеспечивает оптимальное воздействие нагрузки на ни нижнюю часть фундамента, противодействует его подмыванию грунтовыми водами. Если грунт в вырытом котловане неприемлем для возведения спроектированного фундамента, поверхностный слой убирается, засыпается песок толщиной не менее 0,2-0,25 м. Подушка тщательно разравнивается.

Схема армирования подушки фундамента.

Чтобы основание фундамента не было зыбким, подушку следует тщательно утрамбовать с помощью виброплиты. В процессе трамбования песок периодически поливается водой для обеспечения максимальной плотности слоя.

При устройстве основания необходимо учитывать активность и уровень грунтовых вод на участке в весенний период. Если строительство ведется в местности, где вода близко подступает к поверхности почвы, под песчаной подушкой обустраивается дренажный слой.

Основание с песчаной подушкой подготавливается в основном при глубоком залегании от поверхности земли грунтовых вод. Метод используется при сооружении одноэтажных домов из легких материалов (пенополистирольных блоков, каркасных строений и т. д).

Для ленточного фундамента толщина песчаного слоя должна быть примерно в 3 раза больше его ширины. Для увеличения срока эксплуатации подушки из песка и предотвращения ее заиливания перед засыпкой в котлован укладывается полотно геотекстиля. Лучше выполняет свои функции подушка трапецеидальной формы с сужением граней вниз под углом в 30˚. Ширина и длина основания должна быть больше размеров фундамента на 0,15-0,2 м.

При устройстве щебеночного основания предварительно засыпается слой песка 0,05-0,1 м и поливается водой. Затем укладывается щебень слоем в 20-25 см. Подсыпка производится до проектного уровня с постепенной трамбовкой виброплитой. Щебень используется фракции 20-40 мм. Основание фундамента с подушкой из щебня обустраивается при строительстве частных домов и котеджей из разнообразных строительных материалов и любой этажности.

Для легких деревянных строений иногда устраивается фундамент из такого же материала. Обработанное специальными составами для устойчивости к влаге и к грибку дерево может выполнить роль фундамента в сухих грунтах. Применяются при обустройстве фундамента и различные комбинации материалов.

Основания и фундаменты

Основания и фундаменты относятся к конструкциям так называемого пулевого цикла — части сооружения ниже «нулевой» отметки здания, за которую условно принимают уровень чистого пола первого этажа.

Основание здания — толща грунтовых пластов, воспринимающая давление от фундаментов и дающая осадку под действием этого давления.

В качестве естественного основания выступают грунты, которые классифицируют на пять групп: скальные, крупнообломочные, песчаные, глинистые и особые (лесовые, вечномерзлые и т.п.). Скальные грунты практически несжимаемы, они являются наилучшим основанием для здания, однако их месторождения трудно разрабатывать. Крупнообломочные грунты также обладают высокой несущей способностью. Песчаные грунты могут воспринимать достаточно большое давление, но их свойства зависят от влажности и содержания в песке пылеватых и глинистых частиц. Глинистые грунты обладают наихудшими для основания свойствами. При увлажнении они снижают несущую способность, а при замерзании в глинистых грунтах возникает пучение.

Для увеличения несущей способности естественного основания создают искусственные основания. Для этого используют три основных метода – уплотнение грунта, укрепление грунта и замена слабого грунта.

Выбор конструкции фундамента определяется конструктивной схемой здания, с одной стороны, и грунтовыми условиями основания, с другой. Фундаменты классифицируются на следующие группы: ленточные, столбчатые, плитные, коробчатые и свайные (рис. 10.2).

Ленточный фундамент представляет собой замкнутый контур (ленту) — полосу из железобетона, укладываемую под всеми несущими стенами здания и распределяющую вес здания по всему своему периметру. Данный тип фундамента является одним из самых распространенных при строительстве гражданских зданий. Ленточные фундаменты бывают сборные и монолитные.

Рис. 10.2. Конструктивные схемы фундаментов:

а — ленточный под стены; б — ленточный иод колонны; в — столбчатый иод стены; г — отдельный иод колонну («стаканного» типа); д — сплошной безбалочный (фундаментная плита); 1 — фундаментная подушка; 2 — армированный шов;

  • 3 блок стены подвала; 4 — армированный пояс; 5 — колонна; 6 — плита;
  • 7 — фундамент «стаканного» типа

Столбчатые фундаменты представляют собой расставленные через определенные промежутки столбы или опоры, сверху соединенные железобетонными фундаментными балками или другими перемычками, на которых возводятся основные конструкции здания. Одной из разновидностей столбчатых фундаментов являются фундаменты «стаканного» типа, применяемые для зданий каркасной конструктивной системы. Столбчатые фундаменты бывают сборные и монолитные.

Плитные фундаменты представляют собой сплошную бетонную плиту под всем зданием и применяются при малоэтажном строительстве или неустойчивых грунтах.

Фундаменты в виде коробчатого сечения применяются при возведении высотных зданий с большими нагрузками. Ребра такой плиты выполняются на полную высоту подземной части здания и жестко соединяются с перекрытиями, образуя таким образом замкнутые сечения различной конфигурации.

Свайные фундаменты устраивают при строительстве зданий на слабых сильно сжимаемых водонасыщенных фунтах, а также при передаче на основание больших нагрузок от колонн и стен многоэтажных зданий. Свайные фундаменты могут устраиваться из деревянных, бетонных и стальных свай.

Обрезом фундамента называют верхнюю плоскость фундамента. Подошва фундамента — нижняя плоскость фундамента, непосредственно опирающаяся на грунт. Глубина заложения фундамента — расстояние от отметки планировки территории или естественного рельефа до подошвы фундамента.

Конструкции нулевого цикла гражданских зданий требуют устройства гидроизоляции. Выбор варианта конструктивного решения гидроизоляции зависит от характера воздействия грунтовой влаги. Вода поступает в фундаментные конструкции через грунт атмосферной влагой или грунтовой водой. Капиллярные явления вызывают отсырение стен подвала и первого этажа, что приводит к их преждевременному разрушению. Гидроизоляция бывает горизонтальной и вертикальной.

В качестве естественного основания выступают грунты, которые классифицируют на пять групп: скальные, крупнообломочные, песчаные, глинистые и особые (лесовые, вечномерзлые и т.п.). Скальные грунты практически несжимаемы, они являются наилучшим основанием для здания, однако их месторождения трудно разрабатывать. Крупнообломочные грунты также обладают высокой несущей способностью. Песчаные грунты могут воспринимать достаточно большое давление, но их свойства зависят от влажности и содержания в песке пылеватых и глинистых частиц. Глинистые грунты обладают наихудшими для основания свойствами. При увлажнении они снижают несущую способность, а при замерзании в глинистых грунтах возникает пучение.

Основные требования к проектированию оснований и фундаментов

Фундаменты, являются неотъемлемой частью любого здания и большинства сооружений, значительно отличаются по своей работе от остальных строительных конструкций. Задача фундаментов состоит в том что бы обеспечить передачу нагрузки от строения на грунты основания.

Читайте также:  Обои Elysium: плюсы и минусы

Под воздействием нагрузок от сооружения грунт, в основном, работает на сжатие и на сдвиг, что приводит к деформациям основания и осадкам зданий.

Таким образом, задача проектирования во многом состоит в «приспособлении» сооружения к геологическим условиям площадки строительства и в комплексном рассмотрении системы «основание – фундамент – сооружение».

Особенностью проектирования системы «основание – фундамент» является недостаток исходной информации, характеризующей основание в целом и каждого слоя в отдельности.

В связи с этим проектирование фундаментов всегда сопряжено с риском, оценить который не всегда представляется возможным. Вместе с тем ошибки при проектировании могут привести к потере устойчивости или развитию недопустимых деформаций основания сооружения.

В основу проектирования оснований и фундаментов заложены следующие принципы:

✔ проектирование оснований сооружений по предельным состояниям;

✔ учет совместной работы системы «основание – фундамент – сооружение»;

✔ комплексный учет факторов при выборе типа фундаментов, несущего и подстилающих слоев основания в результате совместного рассмотрения, в том числе:

✔ инженерно-геологических условий площадки строительства;

✔ особенностей сооружения и чувствительности его несущих конструкций к неравномерным осадкам;

✔ методов выполнения работ по подготовке оснований и устройству фундаментов.

Комплексный взаимный учет всех этих факторов делает задачу проектирования и устройства фундаментов сложной и ответственной. Ошибки, допущенные при проектировании и возведении фундаментов, могут привести к проведению дополнительных мероприятий, значительно превышающих стоимость фундаментов.

При разработке проектов фундаментов необходимо обеспечить:

✔ прочность и эксплуатационную надежность зданий и сооружений (деформации конструкций не должны превышать предельно допустимых величин);

✔ максимальное использование прочностных и деформационных свойств грунтов основания, а также прочности материала фундамента;

✔ минимальную стоимость, материалоемкость и трудоемкость устройства фундаментов;

✔ максимальное сокращение сроков строительства.

✔ максимальное сокращение сроков строительства.

Континуальный

Континуальные фундаменты разработаны для высоких, тяжёлых строений, памятников, опор мостов.

Конструкция имеет несколько уровней и по форме похожа на пирамиду, совмещает элементы столбчатых, ленточных плитных типов.

Континуальные типы оснований избыточны по свойствам для частного строительства и применяют их редко.


Технология заключается в укладке отдельных элементов фундамента с заполнением швов цементно-песчаным раствором.

Технология устройства фундамента, виды фундамента и способы монтажа

Проект любого капитального строительства начинается с выбора фундамента, так как прочность и долговечность будущего строения зависят именно от качественного обустройства его фундамента.

Наиболее прочным и надежным фундаментом из всех известных вариантов считается монолитный. Он характеризуется устойчивостью к различным факторам окружающей среды и долговечностью. Именно поэтому такие фундаменты выбираются для крупных зданий, больших промышленных, торговых центров, многоэтажных жилых строений и офисных зданий.

Устройство фундамента считается достаточно затратным, но, несмотря на это, его стоимость полностью оправдана, так как основание способно выдерживать значительные нагрузки на протяжении длительного времени.

Принцип монолитного основания заключается в сочетании железобетона, после застывания создающего достаточно прочную структуру, способную выдержать даже динамичные нагрузки. Благодаря такому основанию, здание гарантированно защищено от появления трещин, грунтовых подвижек и других негативных процессов, способных привести к повреждению строения. Все работы по устройству фундамента отличаются особыми подготовительными операциями. Необходимо соблюдать точную технологию и грамотно заранее все просчитать.

Устройство фундамента считается достаточно затратным, но, несмотря на это, его стоимость полностью оправдана, так как основание способно выдерживать значительные нагрузки на протяжении длительного времени.

Последовательность проектирования оснований и фундаментов

Проектирование оснований и фундаментов включает ряд операций, которые обычно выполняются в указанной ниже последовательности.

1. Оценка результатов инженерно-геологических, инженерно-геодезических и инженерно-гидрометеорологических изысканий для строительства. Состав этих данных определяется соответствующи­ми нормами и инструкциями и рассматривается в курсе инженерной геологии. От качества и полноты материалов изысканий во многом зависят надежность и экономичность принимаемых в проекте реше­ний оснований и фундаментов.

В общем случае результаты изысканий должны содержать сведе­ния о местоположении территории строительства, ее климатических и сейсмических условиях, инженерно-геологическом строении и литологическом составе толщи грунтов, наблюдаемых неблагоприят­ных факторах (наличие просадочности грунтов, карста, оползневых процессов, горных выработок и т. п.). Особое внимание уделяется сведениям о наличии в горизонтах подземных вод, колебаниях их уровней, агрессивности по отношению к материалам фундаментов и подземных частей зданий.

Результаты детальных исследований, проводимых на площадке строительства, должны содержать сведения о стратиграфической последовательности напластования грунтов, формах залегания, раз­мерах в плане и по глубине, происхождении, составе и состоянии всех инженерно-геологических элементов, о подземных водах. Дан­ные представляются в виде инженерно-геологических колонок по отдельным выработкам (скважинам, шурфам и т. д.) и разрезов, построенных по этим выработкам, а также соответствующих тек­стовых материалов и таблиц. На инженерно-геологических доку­ментах обязательно приводятся места отбора проб для лаборатор­ных определений характеристик физико-механических свойств грун­тов, пункты проведения полевых опытов, включая статическое и ди­намическое зондирование.

Количество выработок, назначаемых для изысканий, определя­ется сложностью инженерно-геологических условий площадки и чу­вствительностью проектируемого сооружения к неравномерным осадкам. Так, для инженерно-геологических условий III категории сложности минимальное число выработок в пределах контура со­оружения составляет 3. 5, а максимальное расстояние между ними – 20. 30 м. Глубина выработок должна не менее чем на 1. 2 м. превышать нижнюю границу сжимаемой толщи основания, а в случае слабых грунтов полностью прорезать их толщу.

Результаты изысканий должны содержать все необходимые данные о физико-механических свойствах грунтов основания, сведения о методах их определения, прогноз возможных изменений показа­телей этих свойств. В особо сложных инженерно-геологических условиях и для сооружений повышенной ответственности требуется проводить исследования грунтов по специальной программе.

2. Анализ проектируемого здания и сооружения. В соответствии с заданием на проектирование определяются плановые и высотные размеры сооружения, устанавливаются его конструктивная и рас­четная схемы, материалы элементов конструкций, способы передачи нагрузок на основание. Исходя из конструктивных и эксплуатацион­но-технологических требований определяется чувствительность со­оружения или отдельных его частей к неравномерным осадкам, назначаются предельные значения деформаций основания.

Важным этапом является определение нагрузок, действующих на сооружение (ветровых, снеговых, особых и т. п.), а также нагру­зок от несущих конструкций сооружения, перекрытий, различного рода оборудования и эксплуатационных условий, передающихся на фундаменты. Равнодействующие всех нагрузок в зависимости от расчетной схемы сооружения прикладываются в уровне верхнего обреза или подошвы фундамента.

Следует обращать внимание на возможное влияние технологи­ческих процессов в проектируемых сооружениях на изменение физи­ко-механических свойств грунтов основания. Необходимо, особенно при строительстве на слабых грунтах, принимать во внимание взаимодействие проектируемого сооружения с окружающей средой (соседние здания и сооружения, установки и оборудование в проек­тируемом сооружении, прокладка коммуникаций, сохранность при­легающей территории, дорог и т. п.).

3. Выбор типа основания и конструкций фундаментов. Имея приведенные выше данные, осуществляют привязку проектируемо­го сооружения к строительной площадке, т. е. совмещение осей сооружения с инженерно-геологическими разрезами и выбор глуби­ны заложения подошвы фундаментов. С этого, собственно, и начи­нается проектирование оснований и фундаментов.

Уже на этой стадии проектирования следует стремиться так разместить сооружение на площади застройки, чтобы по возмож­ности избежать влияния на сооружение источников вредных воздей­ствий: линз слабых грунтов, карстовых полостей, старых горных выработок, посторонних коммуникаций и т. п.

Важно отметить, что при всем разнообразии природно-климати­ческих и инженерно-геологических условий площадок строительства на территории нашей страны, многообразии конструкций различ­ных зданий и сооружений в массовом строительстве обычно приме­няются два класса фундаментов: мелкого заложения и свайные фундаменты. Более сложные конструкции (сваи-оболочки, опускные колодцы, кессоны и т. д.) используются для специальных сооруже­ний или в сложных инженерно-геологических условиях.

Конечно, и в массовом строительстве в каждом конкретном случае имеется большое количество различных вариантов решений, позволяющих проявить искусство проектировщика. Основные поло­жения такого подхода будут рассмотрены в соответствующих гла­вах учебного пособия. Здесь же ограничимся лишь общими соображениями.

Обычно уже сама схема сооружения (каркасное, бескаркасное, многоэтажное, одноэтажное, наличие или отсутствие подвальных помещений и т. д.), а также величина и характер нагрузок, передава­емых на основание (моментные, безмоментные и т. п.), в совокуп­ности с данными об основании (характер залегания, несущая спосо­бность, деформируемость грунтов, наличие и уровень залегания подземных вод и т. д.) позволяют наметить несколько вариантов конструкций фундаментов, наиболее подходящих для конкретных условий строительства. В случае применения фундаментов мелкого заложения иногда рассматриваются альтернативные варианты ис­пользования основания без проведения дополнительных работ по его укреплению (естественное основание) или с проведением таких работ (искусственное основание). Следует также учитывать матери­ально-технические возможности индустриальной базы района стро­ительства (наличие и мощности заводов железобетонных изделий при проектировании сборных фундаментов и забивных свай; бес­перебойная поставка бетона для монолитных фундаментов; обес­печенность транспортным, сваебойным оборудованием и т. п.), дальность перевозок строительных материалов, а также производ­ственный опыт строящей организации.

Читайте также:  Почему гудит холодильник: 5 основных причин и как их устранить

Заканчивается этот этап выбором типа основания и нескольких (обычно не менее трех) конструктивных типов фундаментов проектируемого сооружения, намеченных для дальнейшего, более деталь­ного анализа. Поскольку в качестве проектного решения будет принят один из этих вариантов, значение рассматриваемого этапа в общей цепочке проектирования очень велико.

4. Расчеты оснований по предельным состояниям, технико-эко­номический анализ вариантов и принятие окончательного решения. Для одного или нескольких сечений сооружения в зависимости от его конфигурации, нагрузок, сложности напластования грунтов про­водятся расчеты выбранных вариантов фундаментов по предель­ным состояниям. Определяются окончательные размеры фундамен­тов в плане, количество и расположение свай, проектируются фун­даменты для каждого варианта. Оцениваются все виды работ по возведению фундаментов и, если нужно, по устройству искусствен­ных оснований и других мероприятий, направленных на уменьше­ние неравномерных деформаций основания. Проводится технико-экономическое сравнение рассматриваемых вариантов и по миниму­му приведенных затрат устанавливается оптимальное проектное решение.

В отдельных случаях, при соответствующем технико-экономи­ческом обосновании, может быть принято и более дорогое решение, если это обеспечивает ускорение ввода объекта в действие и получе­ние за счет этого дополнительных прибылей.

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.

1. Оценка результатов инженерно-геологических, инженерно-геодезических и инженерно-гидрометеорологических изысканий для строительства. Состав этих данных определяется соответствующи­ми нормами и инструкциями и рассматривается в курсе инженерной геологии. От качества и полноты материалов изысканий во многом зависят надежность и экономичность принимаемых в проекте реше­ний оснований и фундаментов.

Основные элементы септика

Септик – местная очистная установка, предназначенная для обустройства независимой от центральных сетей канализационной системы.

Основные задачи элемента – временное накопление стоков и их последующая фильтрация. Современные септики стали усовершенствованной альтернативной традиционным выгребным ямам.

Понимание устройства и механизма работы септика облегчит выбор очистного сооружения и его установку.

Конструкции разных модификаций имеют некоторые общие составляющие. Очистная система представляет собой герметичный бак, включающий один или несколько отсеков.

Камеры септика разделены перегородками. Движение жидкости между ними осуществляется по переливным патрубкам.

К первому отсеку от внутренней канализации дома подведена сливная труба, а из последней камеры выводиться очищенная вода в грунт или полуочищенная – на почвенную доочистку.

Основными составляющими всех очистных агрегатов являются:

  1. Емкости для отстаивания стоков. Накопительные баки выполняются из пластика, металла, бетона или кирпича. Наиболее предпочтительны модели из стеклопластика и полипропилена – материалы устойчивы к истиранию и гарантируют герметичность резервуара в течение всего срока эксплуатации.
  2. Входящий и исходящий трубопровод. Переливные патрубки устанавливаются под уклоном, обеспечивая беспрепятственное протекание жидкости между баками.
  3. Элементы обслуживания. Ревизионные колодцы и люки. Устанавливается как минимум один колодец на наружной трассе канализационного трубопровода. При увеличении протяженности ветки более 25 м устраивается дополнительная ревизия.
  4. Вентиляционная система. Независимо от того, какие бактерии (анаэробные или аэробные) участвуют в процессе переработки сточных масс, для нормальной жизнедеятельности микроорганизмов, отвода метана и поддержания нужной температуры необходим воздухообмен.

Простейшая схема вентилирования локальной канализации включает один стояк в начале системы, а второй – на крайней секции септика. При обустройстве фильтрационных полей вентиляционный стояк устанавливается на каждой дренажной трубе.

Этап 3. Повторная очистка. Во второй камере происходит повторное разложение нечистот. В некоторых септиках на данном этапе за счет действия специальных бактерий и препаратов распадаются химические (отходы средств личной гигиены) и органические соединения.

Общие сведения


Переработка сточных вод аэробными бактериями начинается при выходе их из септика и попадании на поля фильтрации. На этих полях стоки дополнительно очищаются, проходят через грунтовый фильтр. Так, стоки очищаются практически на 100%, и не приносят вреда окружающей среде.

Очистные сооружения

Для переработки стоков, относящихся к бытовому типу, применяются комплексные сооружения, к элементам которых относятся:

  • отстойники, в них происходит расслоение взвешенных частиц. Те, что с большим удельным весом, выпадают виде осадка. Инородные элементы, которые легче жидкости, уходят в поверхностные слои;

Очистные станции

  • песколовки, они выполняют роль фильтра, в котором собираются примеси, не поддающиеся растворению, например, песок, битое стекло, шлаки и т.д.;
  • решетки, их назначение улавливать содержащийся в стоках крупноразмерный мусор, например, ветошь, полиэтиленовые кульки или ветки.

В быту широко применяются септики, по сути они представляют собой мини отстойники. Для улучшения их результативности используются специальные биопрепараты, называемые антисептиками. Они содержат в своем составе различные виды микроорганизмов, способствующих разложению выпадающей в осадок органики.

Чтобы очистить отстойник при его заполнении илом, используется насос, эту процедуру достаточно выполнять один раз в несколько лет.

Видео: Как чистят сточные воды.

Аэротенк несколько отличается по принципу действия от отстойника, схема его работы отображена на картинке.

Схема работы аэротенка для переработки вод, относящихся к сточным

Используемые обозначения:

  • А – аэротенк;
  • B – отстойник для обогащенной кислородом смеси ила и канализационных стоков;
  • c – патрубок для подачи бытовых стоков (подключается канализация);
  • d – поступление смеси стоков и ила;
  • е – отвод очищенной жидкости;
  • f – патрубок для откачки излишков ила;
  • g – возврат ила.

  • А – аэротенк;
  • B – отстойник для обогащенной кислородом смеси ила и канализационных стоков;
  • c – патрубок для подачи бытовых стоков (подключается канализация);
  • d – поступление смеси стоков и ила;
  • е – отвод очищенной жидкости;
  • f – патрубок для откачки излишков ила;
  • g – возврат ила.

Стоимость чистки септиков

Стоимость работ по откачке отходов из септика определяется объемом откачанных отходов. Средняя цена составляет 950 рублей за один метр кубический. При этом не стоит забывать, что уровень цен в различных компаниях разный, поэтому этот опрос стоит сразу уточнять при оформлении заказа на проведение работ.

  • Ассенизаторские машины (их еще называют вакуумными). В случае если объем машины равен или больше чем объем накопившихся отложений, есть возможность выполнить весь комплекс работ посредством такой техники, которая удалит все накопления. При этом будет обеспечена защита всей автономной канализационной системы и ее составляющих от поломок.
  • Илососные машины. Эти современные технические средства очистки позволяют производить откачку из септиков различного объема. Такие машины оборудованы более мощным по сравнению с ассенизаторскими машинами оборудованием, которое позволяет обеспечить качественное удаление глины с глубины до 8 метров. При этом сама машина этот момент может быть расположена на расстоянии до 40 метров от самого септика. Этот факт значительно облегчает проведение процедуры очистки, поскольку не создает трудностей с подъездом непосредственно к септику. Объем таких машин различный и рассчитан на 5-30 метров кубических отходов. При этом посредством такого оборудования можно провести не только откачку отходов, но и промывку труб и внутренней емкости септика при помощи струи воды под воздействием высокого давления, что позволяет удалить даже затвердевшие отложения. Возможность проведения сразу двух разных операций дается самой конструкцией машины, которая имеет в цистерне перегородку. Таким образом часть цистерны предназначена под откачанные отходы, а часть под воду.
  • Вакуумные насосы с приводом, с наличием всасывающей стрелы. Управление таким насосом обеспечивается посредством пульта дистанционного контроля.Такие насосы обладают большой мощностью и оборудованы шлангами разной длины, это позволяет производить откачку масс даже с большой глубины.

Параметры выбора септика

Если расположение индивидуальных очистных сооружений регламентируется нормативами, а объем подбирается в зависимости от количества стоков, то какого вида будет септик, устройство системы и способ организации почвенной фильтрации зависит, прежде всего, от уровня грунтовых вод (УГВ) и пропускной (фильтрующей) способности грунта. При низком УГВ разрешены практически любые, составные или монолитные конструкции. Но если у грунта слабая пропускная способность (глинистые почвы), то необходимо увеличение площади поля фильтрации, длины фильтрационного тоннеля или слоя дренажной подушки под фильтрационным колодцем.

Если же УГВ высокий, то допустимо использование только монолитных септиков (ЖБ, пластиковые емкости) с несколькими камерами и дополнительным герметичным накопителем. Из накопителя посредством поплавкового дренажного насоса отстоявшиеся стоки будут поступать на насыпное поле фильтрации (применяются кассетные и тоннельные инфильтраторы). Подземная фильтрация непосредственно из септика в ситуации с близким залеганием верховодки неприемлема.

Необходимо, чтобы расстояние от дна фильтрующего сооружения до грунтовых вод было не менее метра.

Востребованные разновидности самодельных септиков

Среди участников нашего портала наиболее востребованы три разновидности самоделок:

  • Из бетонных колец;
  • Монолитные железобетонные;
  • Пластиковые (из еврокубов).

Необходимо, чтобы расстояние от дна фильтрующего сооружения до грунтовых вод было не менее метра.

Добавить комментарий